
RINGS OF INVARIANTS OF FINITE GROUPS

JACK JEFFRIES

These are lecture notes and exercises for a short graduate lecture series on invariant theory
for the summer school Recent Developments in Commutative Algebra at IIT Dharwad in 2025.
This course has three 90 minute lectures and two problem sessions of 60 minutes each. The
first lecture will focus on some basic terminology, results, and examples about rings of invariants
of finite groups. The second lecture will discuss polynomial invariant rings and separating sets.
The third lecture will discuss Cohen-Macaulay invariant rings and local cohomology.

References for these notes include the books of Benson [?], Campbell and Wehlau [?], and
Derksen and Kemper [?] the survey articles of Hochster [?] and Stanley [?], and the recent paper
of Goel-Jeffries-Singh [?].

1. Rings of invariants of finite groups

Throughout these lectures, K is a field, and S = K[x1, . . . ,xn] is a polynomial ring in n
variables over K .

Linear actions on polynomial rings. Let G be a finite group, K a field, and V be a finite
dimensional vector space. Recall that a (left) representation of G on V is a (left) group action

such that for each g ∈ G, the map V
g
−→ V is K-linear; i.e., given a basis of V � Kn, we have

V
g
−→ V v 7−→ Agv

for some matrix Ag . Any subgroup of GL(V ) has a natural representation as such: elements of
GL(V ) tautologically act on V by linear transformations.

Given a representation of G on V , there is an induced representation of Gop on V ? , the
space of linear forms, by the rule g(`)(v) = `(g(v)); equivalently, we can think of this as a right
representation of G on V . The oppositeness comes from the fact that dualizing is contravariant.
To fix this, we consider the left action by the rule g(`)(v) = `(g−1(v)) instead. This gives the
same collection of endomorphisms of V ? , this way we still get a left action.

Explicitly, equip V = Kn with the standard basis, take x1, . . . ,xn the dual basis of V ? , and let
Agbe the matrix of the action of g on Kn. Then the matrix of g on V ? in this basis is (ATg )

−1:
the transpose arises from the acting on the forms, and the inverse from our choice of using g−1

instead of g .
Given the vector space V , we have the space of linear forms V ? , and taking the symmetric

algebra of V ? , one has the ring of polynomial functions K[V ] = Sym(V ?) on V . Explicitly, if
V ? = K{x1, . . . ,xn}, then K[V ] is the polynomial ring K[x1, . . . ,xn]. Any K-linear endomorphism
of V ? (or of V ) determines a degree preserving K-algebra automorphism of K[V ] simply
because this is a polynomial ring in a basis for V ? . Conversely, any degree-preserving K-
algebra automorphism of K[V ] arises from a unique K-linear endomorphism of V ? (or of V )
in this way: one restricts to the degree-one piece of K[V ] (or its dual).

Thus, given a representation of G on V , then one gets a left action of G on K[V ] by degree-
preserving K-algebra homomorphisms, and every such action of G on a polynomial ring S
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arises in this way. We say G acts linearly on a polynomial ring S to mean that G acts by
degree-preserving K-algebra homomorphisms. For a linear action of G on S , we take V to be
the dual of S1, the space of one-forms.
For a linear action of G on S = K[x1, . . . ,xn], one also gets an action of G on the space

of maximal ideals on S by g ·m = g−1(m); here g−1 means preimage. Among these are the
K-rational points

mv = {f ∈ S | f (v) = 0} = (x1 − v1, . . . ,xn − vn)
for some v ∈ V � Kn; if K is algebraically closed, these are all of the maximal ideals. Then

f ∈ g−1(mv)⇐⇒ f (g(v)) = 0⇐⇒ f ∈mg(v),

so the action of G on the space of K-rational points is, up to swapping inverses, exactly the
same as the action of G on V .

Given a linear action of G on S , an element f ∈ S is invariant if g(f ) = f for all g ∈ G.
The ring of invariants is the subring of S consisting of all invariant elements, denoted SG.
We note two easy observations about SG: first, it is a K-algebra, since linear actions are
K-algebra automorphisms. Second, it is a graded K-subalgebra of S : if f = f0 + · · · + fn ∈ SG
is the homogeneous decomposition of f , then since the action of G is degree-preserving, the
homogeneous decomposition of g(f ) is g(f0) + · · ·+ g(fn), so if f ∈ SG, so is each fi .

We will often specify the linear action

Examples of invariant rings.

Example 1.1. Let K be a field of characteristic not equal to 2, and let G = Z/2 = {e,g} act on
Kn by g(v) = −v. Then for S = K[V ] = K[x1, . . . ,xn], one has g(xi) = −xi for all i. Note that f
is invariant if and only if g(f ) = f in this case. Then for any homogeneous element f ∈ S , one
has g(f ) = (−1)deg(f ) f . Writing a general polynomial

f = f0 + f1 + · · ·+ fn
as a sum of its homogeneous components, we have

g(f ) = f0 − f1 + f2 − · · ·+ (−1)nfn
and g(f ) = f if and only if every homogeneous component has even degree. In this case, we can
easily write down generators for SG as a K-algebra, namely, SG is generated by all monomials
of degree two:

SG = K[x21,x1x2, . . . ,x
2
n].

Example 1.2. Let G = Sn be the symmetric group on n letters, and let G act on V = Kn by
permuting the standard basis. Then G acts on S = K[V ] by

g(xi) = xg(i).

The invariant polynomials are called symmetric polynomials. We claim that the ring of sym-
metric polynomials is generated as a K-algebra by the elementary symmetric polynomials

e1 =
∑
i

xi , e2 =
∑
i<j

xixj , . . . , en = x1 · · ·xn.

To prove it, suppose to the contrary that there is some homogeneous invariant f not in
K[e1, . . . , en]. Order the monomials in S lexicographically, and consider the leading monomial
of f .
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We claim that there is some h ∈ K[e1, . . . , en] with the same leading monomial as f . Indeed,
note that the leading monomial of f must be of the form xa11 · · ·x

an
n with a1 ≥ · · · ≥ an, since any

permutation of the a’s gives another monomial of f . Then h = eann e
an−1−an
n−1 · · ·ea1−a21 does the job.

Thus, f − h is an element of the same degree that is not in K[e1, . . . , en], but with a smaller
leading monomial in the lexicographic order. Since there are finitely many monomials of a
given degree, one can repeat this finitely many times to get a contradiction.

Example 1.3. Let G = An be the alternating group on n letters, and let G act on V = Kn by
permuting the standard basis. Then An acts linearly on S = K[x1, . . . ,xn] by the rule

g(xi) = xg(i).

For convenience, let’s assume that K has characteristic other than 2. Clearly SSn ⊆ SAn . An
additional invariant of interest is the discriminant

∆ =
∏
i<j

(xi − xj).

We claim that
SAn = K[e1, . . . , en,∆].

To see this, note first that ∆2 is a symmetric polynomial, and hence an element of K[e1, . . . , en].
Thus, we can write K[e1, . . . , en,∆] = K[e1, . . . , en]⊕K[e1, . . . , en] ·∆. Now, the action of Sn on
S restricts to an action on SAn , and since An acts trivially on SAn , we get an induced action
of Z/2 � Sn/An on SAn . We can decompose this as a direct sum of the +1 eigenspaces and
−1 eigenspaces since the characteristic is not two. The +1 eigenspace is elements fixed by An

and an additonal transposition, hence SSn . The −1 eigenspace is a SSn submodule of SAn . We
claim that the −1 eigenspace is SSn ·∆. To show this, it suffices to show that any element in the
−1 eigenspace is a multiple of ∆ in S . Using that S is a UFD, it suffices to show that xi − xj
divides such an f , or that fxi=xj is zero. But (i j)(f ) = −f , so it is true.

Transfer and norm. There are some elementary recipes to turn arbitrary polynomials into
invariant polynomials. We define the transfer map from TrG : S −→ SG by

Tr(s) =
∑
g∈G

g(s).

The image is indeed an invariant, since hTrG(s) =
∑
g∈G hg(s) is the same sum, permuted. Thus,

one can construct elements by computing transfers of various elements of S . Moreover, this
map is SG-linear since r ∈ SG and s ∈ S yield

TrG(rs) =
∑
g∈G

g(rs) =
∑
g∈G

g(r)g(s) =
∑
g∈G

rg(s) = r
∑
g∈G

g(s) = rTrG(s).

It is also a degree-preserving map.
We say that G is nonmodular if the order of G is a unit in K , and modular otherwise. In

the nonmodular case, we define the Reynolds operator to be the map

ρ : S −→ SG,ρ(s) =
1
|G|

∑
g

g(s) =
1
|G|

Tr(s).

Like with the transfer, this is an SG-linear map with image in SG. Moreover, for r ∈ SG, we have
ρ(r) = r . Thus, in the nonmodular case, the transfer map and Reynolds map are surjective. This
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gives a simple quasi-algorithm to compute invariants: evaluate the Reynolds operator at various
polynomials in S . Of course, to compute all invariants, one needs some extra information if one
wants to account for all invariants this way. Note also that the transfer map is never surjective
in the modular case, since ρ(1) = |G| = 0, and thus no element of s can map to 1 for degree
reasons.

Another useful construction is the norm map from S to SG given by

NG(s) =
∏
g∈G

g(s).

In particular, any element s ∈ S has a nonzero S-multiple NG(s) in SG.
We establish some basic properties of invariant rings.

Proposition 1.4. Let G be a finite group acting linearly on S .

(1) The inclusion SG ⊆ S is integral.
(2) frac(SG) = frac(S)G.
(3) S is an SG-module of rank |G|.
(4) SG is integrally closed in frac(SG).

Proof. Any element s ∈ S is a root of the monic polynomial
∏
g(T − g(s)) ∈ SG[T ].

The containment frac(SG) ⊆ frac(S)G is clear. Let a/b ∈ frac(S)G, so a/b = g(a)/g(b) for
all g ∈ G. We can multiply the numerator and denominator by

∏
g,e g(b) to rewrite a/b with

b ∈ SG. Then g(a)/g(b) = g(a)/b, so a/b ∈ frac(S)G implies a ∈ SG, so a/b ∈ frac(SG).
The third statement follows from the second.
Now, let a/b ∈ frac(SG) be integral over SG. Then since a/b ∈ frac(S) is integral over S , and

hence in S . But if a/b = s with a,b ∈ SG and s ∈ S , then s ∈ SG as well. �

Example 1.5. We return to the symmetric polynomials. Since K[e1, . . . , en] ⊆ K[x1, . . . ,xn] is
integral, we deduce that dim(K[e1, . . . , en]) = n. Using the fact that K[e1, . . . , en] is n-generated,
we find that e1, . . . , en are algebraically independent.

Finite generation. We now turn to the question of describing all invariants. We will show that
every invariant ring in our setting is a finitely generated K-algebra.

We will use the grading on R in a crucial way. For an N-graded K-algebra R, we define

R+ := (r ∈ Ri | i > 0)

for the ideal generated by homogeneous elements of positive degree.

Lemma 1.6. Let R be an N-graded K-algebra with R0 = K a field. If R+ = (f1, . . . , ft) for some
homogeneous elements fi ∈ R, then R = K[f1, . . . , ft].

Proof. Let A = K[f1, . . . , ft]. Clearly A is a graded K-algebra and A ⊆ R. If A , R, we can
take a homogeneous element r of smallest degree in RrA. Since deg(r) > 0, we have r ∈ R+ =
(f1, . . . , ft), and we can write r =

∑
rifi with ri homogeneous of degree deg(r)−deg(fi) < deg(r).

By minimality, we have ri ∈ A, and then r ∈ A, contradicting the existence of r < A. �

Theorem 1.7. Let G be a finite group acting linearly on S . Then the ring of invariants R = SG is a
finitely generated K-algebra.

We use the proposition above to give two proofs of this theorem. The first is specific to the
nonmodular case.
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Hilbert’s proof, nonmodular case. Consider the ideal (R+)S of S . By definition, this ideal is gen-
erated by homogeneous elements of R; by the Hilbert Basis Theorem, it is generated over S by
a finite set f1, . . . , ft of homogeneous elements in R+.
We claim that R+ = (f1, . . . , ft). Indeed, let r ∈ R+. Then r ∈ (R+)S , so r =

∑
i fisi . Applying

the Reynolds operator ρ, we get

r = ρ(r) = ρ(
∑
i

fisi) =
∑
i

fiρ(si), with ρ(si) ∈ R,

so r ∈ (f1, . . . , ft). Then, by the previous Lemma, we conclude that R = K[f1, . . . , ft]. �

Noether’s proof, general case. Each xi is integral over R. Take the coefficients of these n integral
equations and let A ⊆ R be the K-algebra they generate. This is a finitely generated K-algebra
by construction. Also by construction A ⊆ S is integral and algebra-finite, so it is module-finite.
But A is Noetherian, so A ⊆ R is module-finite, and hence R is Noetherian. In particular R+ is
generated by finitely many homogeneous elements, so R is a finitely generated algebra by the
Lemma. �

Degree bounds. We have succeeding in finding generating sets for rings of invariants in our
earlier examples. Our goal now is to turn our quasi-algorithm for computing invariant rings
into a proper algorithm, at least in the nonmodular case. Supposing that we have a bound d
for the degrees of generators of the invariant ring, we can compute by brute force: take the
Reynolds operator for all monomials in S of degree at most d.

Lemma 1.8 (Benson). Let G be a finite group acting linearly on S = K[x1, . . . ,xn], and suppose that
|G| ∈ K×; i.e., that the action is nonmodular. Then (S+)m ⊆ (SG+ )S .

Proof. Let {sg}g∈G be m homogeneous elements of S of positive degree, indexed by the elements
of G. We want to show that

∏
g∈G sg ∈ (SG+ )S . Take h ∈ G. We have

Xh =
∏
g∈G

((
(hg)(sg)

)
− sg

)
= 0,

since one of the factors is zero. On the other hand, one can foil all of this out: there is a term
for each subset A ⊆ G, corresponding to the collection of binomials for which one chooses the
first factor. Working like so, one gets∑

h∈G
Xh =

∏
g∈G

((
(hg)(sg)

)
− sg

)
=

∑
A⊆G

(−1)m−|A|
∑
h∈G

∏
g∈A

h(gsg)


∏
GrA

sg

 .
Comparing with above, one obtains that this sum is zero.

When A = ∅, the summand is (−1)mm
∏
g∈G sg . For every other summand, the term

∑
h∈G

∏
g∈Ah(gsg)

is a G-invariant of positive degree, and hence every other summand lies in (R+)S . This shows
the lemma. �

Theorem 1.9 (Fogarty, Fleischmann). Let G be a finite group of order m, and suppose that m ∈ K×.
Then R = SG is generated as an K-algebra by homogeneous elements of degree at most m.

Proof. By the Lemma, Sm = (S+)m ⊆ (R+)S . Thus, the ideal (R+)S is generated by elements
of degree at most m. Take a generating set f1, . . . , ft ∈ R+ of homogeneous elements of degree
at most m. From Hilbert’s proof of finite generation in the nonmodular case, we deduce that
R = K[f1, . . . , ft]. �
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Example 1.10. Let G =Z/3 = 〈g〉 act on S = F2[x,y] by

g ·
[
x
y

]
=

[
y

x+ y

]
.

We can compute the invariant ring by brute force by the image under the Reynolds operator of

1,x,y,x2,xy,y2,x3,x2y,xy2, y3

to get

1, 0, 0, 0, x2 + xy + y2, 0, x2y + xy2, x3 + x2y + y3, x3 + xy2 + y3, x2y + xy2

respectively. We deduce that

SG = F2[x
2 + xy + y2,x2y + xy2,x3 + x2y + y3].

This bound can fail in the modular case:

Example 1.11. Let S = F2[x1,x2,x3, y1, y2, y3]. Let G = Z/2 act by swapping xi with yi for
each i. Then the invariant ring is not generated in degree 2.

However, one has the following.

Theorem 1.12 (Symonds). Let G be a finite group acting linearly on S = K[x1, . . . ,xn]. Then
R = SG can be generated by elements of degree at most n(m− 1).

We will not prove this theorem, but we will outline some of the basic ideas behind the proof
later on in this series.

Molien’s Theorem. A more sophisticated version of the algorithm above can be executed using
Hilbert series. Recall that the Hilbert series of a graded K-algebra A is the generating function
HA(t) =

∑
i dimK (Ai)ti . Given the Hilbert series of the invariant ring, one can then know in

which degrees invariants live. Even better, given a guess of generating invariants, one can then
verify that the proposed set is correct, or otherwise find in which degrees invariants are missing.
It turns out that one can compute these in characteristic zero.

Theorem 1.13 (Molien). Let K be a field of characteristic zero, and G be a finite group acting linearly
on S = K[x1, . . . ,xn]. Then

HSG(t) =
1
|G|

∑
g∈G

1
det(1− gt,V )

.

Proof. We can replace K by K without affecting the Hilbert function SG or the right-hand side
above, so we assume K is algebraically closed.

First, consider the Reynolds map ρ : S −→ SG, and write π : S −→ S for the composition
of ρ with the inclusion map SG ⊆ S . For each j ∈ N, the map π restricts to a K-linear map
πj : Sj −→ Sj such that π2 = π. We can then write Sj = ker(π)⊕ SGj , and taking bases with
elements from each, the matrix for π is diagonal with ones corresponding to basis elements
from SGj and zeroes elsewhere. Thus

dimK (S
G
j ) = trace(πj ,Sj) = trace(

1
|G|

∑
g∈G

g,Sj) =
1
|G|

∑
g∈G

trace(g,Sj).



RINGS OF INVARIANTS 7

It remains to show that ∑
j

trace(g,Sj)t
j =

1
det(1− gt,V )

.

We can change basis and assume that the matrix of g acting on V is in Jordan form. By
considering Jordan blocks and since g has finite order, we see that the Jordan form is diagonal:

g ∼


λ1

λ2
. . .

λn

 .
Then g(xa11 · · ·x

an
n ) = λa11 · · ·λ

an
n x

a1
1 · · ·x

an
n . Thus, the eigenvalues of the action of the action of g

on Sj are the j-fold products of the eigenvalues of g on V , which yields∑
j

trace(g,Sj)t
j =

∑
j

λ
j
1t
j

 · · ·
∑
j

λ
j
nt
j

 = 1∏
i(1−λit)

=
1

det(1− gt,V )
.

This completes the proof. �

Example 1.14. Let G =Z/3 = 〈g〉 acts linearly on S =C[x,y] by g =
[
ω 0
0 ω−1

]
, with ω = e2πi/3.

We have

det(1− et,V ) =
∣∣∣∣∣1− t 0
0 1− t

∣∣∣∣∣ = (1− t)2

det(1− gt,V ) =
∣∣∣∣∣1−ωt 0

0 1−ω2t

∣∣∣∣∣ = (1−ωt)(1−ω2t) = 1+ t + t2

det(1− g2t,V ) =
∣∣∣∣∣1−ω2t 0

0 1−ωt

∣∣∣∣∣ = (1−ωt)(1−ω2t) = 1+ t + t2.

Thus

HSG(t) =
1
3

(
1

(1− t)2
+

2
1+ t + t2

)
=
1
3
(1+ t + t2) + 2(1− t)2

(1− t)(1− t3)
=

t2 − t +1
(1− t)(1− t3)

.

We can expand this as 1+ t2+2t3+ t4+ · · · . In particular, there is a nonzero invariant of degree
2 and two linearly independent invariants of degree 3. We can find these by inspiration, or
elsewise, by Reynolds: one has xy,x3, y3, so

C[x3, y3,xy] ⊆ SG.
We claim that equality holds. One way to show this is by showing that the Hilbert series are
equal. To compute the Hilbert series of C[x3, y3,xy], let us first note that x3, y3 are algebraically
independent, and xy is a root of the irreducible monic polynomial T 3−x3y3 over C[x3, y3]. By
division, C[x3, y3,xy] =

⊕
C[x3, y3] · {1,xy,x2y2}. We can add the Hilbert series to get 1+t2+t4

(1−t3)2 .
After making a common denominator, we obtain the equality.
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Problem Set #1

(1) LetM =
[
i 0
0 i

]
and let G =Z/4 = 〈g〉. Consider the natural action of G on V = K2 and

the induced linear action on S = C[x,y]. Find some nonzero elements of SG. Can you
find a generating set? (Hint: Compare to Example 1.1).

(2) LetM =
[
0 −1
1 0

]
and N =

[
−1 0
0 1

]
in GL2(Q). Consider the natural action of G and

H on V = K2 and the induced linear action on S =C[x,y].
(a) Compute the groups H = 〈M〉 and G = 〈M,N 〉.
(b) Use Molien’s formula to find the Hilbert series of SH and SG. Compute both of them

up to the t4 term.
(c) Find algebraically independent G-invariants of degrees 2 and 4. Explain why they

must generate SG.
(d) Use the previous parts to determine the smallest degree of an element f that is

H-invariant but not G-invariant, and find such an element f .
(e) Observe something interesting about f 2. Can you find a generating set for SH?

(3) Let G be a finite group. Given a homomorphism G ↪→ Sn, for any field K one obtains
a linear action of G on K[x1, . . . ,xn] by g(xi) := xg(i), which we will call a permutation
action. Show that, for such an action, SG has a K-vector space basis given by orbit sums
of monomials, i.e., elements of the form

∑
m′∈G·m

m′ where m is a monomial of S . Deduce

that, in this setting, the Hilbert function of SG is independent of K .

(4) Let An be the alternating group on n letters, and let An act by permuting the variables.
Let K be a field of characteristic two.
(a) Show that if K has characteristic two, then the discriminant ∆ =

∏
i<j(xi − xj) is an

element of SSn and deduce that SAn , K[e1, . . . , en,∆].
(b) Show that µ = TrAn(xn−11 xn−22 · · ·xn−1) ∈ SAn r SSn .
(c) Show that SAn = K[e1, . . . , en,µ].

(5) Let M =
[
1 0
1 1

]
in GL2(Fp) and G = 〈M〉 � Z/p. Consider the natural action of G on

V = K2 and the induced linear action on S = K[x,y].
(a) Explain why Molien’s Theorem does not directly apply.
(b) Show that Fp[x1,N (x2)] ⊆ SG, and explain why Fp[x1,N (x2)] is isomorphic to a

polynomial ring in two variables. In particular, Fp[x1,N (x2)] is normal.
(c) Show that Fp(x1,N (x2)) = Fp(x1,x2)G.
(d) Show that Fp[x1,N (x2)] ⊆ Fp[x1,x2] is integral. Deduce that SG = Fp[x1,N (x2)].
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(6) Let K = F2, and let G =Z/2 act on S = K[x1,x2,x3, y1, y2, y3] by swapping xi with yi for
each i. In this problem, we will show that SG is not generated by elements of degree ≤ 2.
(a) Let A = K[SG≤2] be the subalgebra of SG generated by elements of degree at most 2.

Show that A is generated by {xi + yi ,xiyi ,xiyj + xjyi | 1 ≤ i < j ≤ 3}.
(b) Let I ⊆ S be the ideal generated by {x2i ,xiyi , y

2
i | i = 1,2,3} and let A be the image of

A in S/I . Compute the graded pieces A1 and A2 and find four linearly independent
elements in A3.

(c) Show that the vector space A1 ·A2 has F2-dimension at most three, and deduce the
result.

(7) Let G be a finite group acting linearly on S . Show that the map π : Spec(S) −→ Spec(SG)
induced by the inclusion map is surjective and π(p) = π(q) if and only if G · p = G · q. In
particular, when K = K , the maximal ideals of SG correspond naturally to the G-orbits
in V .

(8) Let G be a finite group of orderm acting linearly on S . Let A = K[SG≤m] be the subalgebra
of SG generated by elements of degree at most m; in the modular case, this may be a
proper subalgebra. Let K = K . Show that the maximal ideals of A correspond naturally
to the G-orbits in V .
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2. Cohen-Macaulay rings and Polynomial rings

We will discuss some properties of graded rings that will help us understand invariant rings
more concretely. We will first recall the two main notions that interest us today. By a graded ring,
we mean a finitely generated N-graded K-algebra with R0 = K , but not necessarily generated
in degree one. From last time, every ring of invariants of a finite group is graded in this sense.

Polynomial rings and systems of parameters. Of course, among the graded rings we under-
stand best are polynomial rings; for us, we will say a ring is a polynomial ring as long as it
is isomorphic to a polynomial ring, i.e., generated by algebraically independent elements. For
example, the invariant ring of Sn is a polynomial ring. The Hilbert series of a polynomial ring
is easy to compute: if S = K[f1, . . . , fn] is a polynomial ring with deg(fi) = di , one has

HS(t) =
1∏n

i=1(1− tdi )
.

A homogeneous system of parameters for a graded ring R of dimension n is a set f1, . . . , fn of
homogeneous elements such that (f1, . . . , fn) is R+-primary. Every graded ring has a homoge-
neous system of parameters, by a variation of the usual local argument. Moreover, for f1, . . . , fn
homogeneous, f1, . . . , fn is a homogeneous system of parameters if and only if K[f1, . . . , fn] is a
Noether normalization.

One can easily find systems of parameters for invariants of finite groups.

Proposition 2.1. Let S = K[x1, . . . ,xn] and G be a finite group acting linearly on S .

(1) If K is infinite, and `1, . . . , `n are general linear forms, then N
G(`1), . . . ,NG(`n) is homoge-

neous system of parameters for SG.
(2) If G is a permutation group, the elementary symmetric polynomials form a homogeneous system

of parameters for SG.

Proof. (1) We will show that for general `1, . . . , `n, the vanishing locus V ((N (`1), . . . ,N (`n))S)
is just the origin. Inductively, assume that Xi = V ((N (`1), . . . ,N (`i))S) is a finite union of linear
spaces of codimension i. Then

⋃
g∈G g

−1(Xi) is a finite union of linear spaces of codimension i,
and for i < n, one can choose a linear form `i+1 that does not vanish identically on of these,
and this works.

(2) The elementary symmetric polynomials are fixed by any permutation action, so K[e1, . . . , en] ⊆ SG,
and since K[e1, . . . , en] ⊆ S is module-finite, so is K[e1, . . . , en] ⊆ SG. That is, this is a Noether
normalization, so this is a homogeneous system of parameters.

�

Cohen-Macaulay graded rings. A graded ring is Cohen-Macaulay if some, equivalently every,
homogeneous system of parameters is a regular sequence. The following alternative characteri-
zation is also quite useful.

Proposition 2.2. Let R ⊆ S be a graded module-finite inclusion of Noetherian positively graded K-
algebras, with R a polynomial ring. Then S is Cohen-Macaulay if and only if S is a free R-module.

Proof. By the Hilbert syzygy theorem, S has finite projective dimension over R. Then by
Auslander-Buchsbaum,

pdR(S) = depth(R)−depthR(S) = dim(R)−depth(S).
Then S is free over R if and only if pdR(S) = 0 which happens if and only if depth(S) =
dim(R)(= dim(S)). �
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Theorem 2.3 (Hochster-Eagon). Let G be a finite group of order m acting linearly on a polynomial
ring S with m ∈ K×. Then R = SG is Cohen-Macaulay.

Proof. Take a homogeneous system of parameters f1, . . . , fn of R. Then this is a system of
parameters for S , and hence a regular sequence there. If ri+1fi+1 ∈ (f1, . . . , fi), then we have
ri+1fi+1 ∈ (f1, . . . , fi)S implies ri+1 ∈ (f1, . . . , fi)S , since it is a regular sequence in S . Applying
the Reynolds operator ρ, we get

ri+1 = ρ(ri+1) ∈ ρ((f1, . . . , fi)S) = (f1, . . . , fi)R.

This shows that f1, . . . , fd is a regular sequence. �

We will see later that the nonmodular hypothesis is strictly necessary.
We can use this to give more concrete descriptions of rings of invariants. When we write a

ring in terms of generators and relations, it is not always clear when two expressions are the
same. Instead, we can use Noether normalization.

Corollary 2.4. Let G be a finite group of order m acting linearly on a polynomial ring S with
m ∈ K×. Then there exist sets of primary invariants f1, . . . , fn ∈ RG and secondary invariants
h1, . . . ,hm ∈ RG such that f1, . . . , fn are algebraically independent and RG =

⊕m
i=1K[f1, . . . , fn]hi .

Namely, every invariant f ∈ RG has a unique expression of the form
f = a1(f1, . . . , fn)h1 + · · ·+ am(f1, . . . , fn)hm,

for some (uniquely determined) tuple a1, . . . , am ∈ K[t1, . . . , tn].

Example 2.5. Consider An acting linearly on S = K[x1, . . . ,xn] with the natural permutation
action. Then we can write

SAn = K[e1, . . . , en]⊕K[e1, . . . , en]∆,
where ∆ is the discriminant in characteristic other than two, and a suitable orbit sum otherwise.
Then e1, . . . , en form a set of primary invariants, and 1,∆ form a set of secondary invariants.

If R is a graded ring with homogeneous system of parameters f1, . . . , fn with degrees d1, . . . ,dn
and h1, . . . ,hm form a free basis for R over K[f1, . . . , fn] with degrees e1, . . . , em, then

HR(t) =
∑m
i=1 t

ei∏n
i=1(1− tdi )

.

Polynomial invariant rings. Our goal now is to characterize polynomial invariant rings in the
nonmodular case. In this case, this can be detected easily by the action of G.

Definition 2.6. Let G be a finite group acting linearly on S = K[x1, . . . ,xn]. We say that g is a
pseudoreflection if codimK (Fix(g,V )) ≤ 1.

The identity is, by our convention, a pseudoreflection.
For g ∈ G, the matrix of g on V can be put into Jordan form after perhaps extending the field

K . In the nonmodular case, this is a diagonal matrix, and g , e is a pseudoreflection if and only
if it is of the form 

ζ 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .
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In the modular case, one may have nondiagonalizable pseudoreflections with Jordan form
1 1 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ,
which are called transvections.

Theorem 2.7 (Shephard-Todd). Let G be a finite group acting linearly on S = K[x1, . . . ,xn].
(1) If |G| ∈ K×, and G is generated by pseudoreflections, then R = SG is isomorphic to a polynomial
ring.

(2) If R = SG is isomorphic to a polynomial ring, then G is generated by pseudoreflections.

Example 2.8. Let Sn act on S = K[x1, . . . ,xn] by permutations. The group Sn is generated by
transpositions. The fixed space of the transposition (i j) includes all ek , k , i, j, and ei + ej ,
so the fixed space is codimension one. That is, Sn is generated by pseudoreflections, and the
invariant ring is a polynomial ring.

Example 2.9. Let An act on S = K[x1, . . . ,xn] by permutations. The group An in fact has no
nontrivial pseudoreflections: the fixed space of an k-cycle is codimension k − 1, and the fixed
space of disjoint ki-cycles is

∑
i(ki − 1). The invariant ring is not a polynomial ring.

We now proceed towards the proof of Shepard-Todd. We need a technical lemma.

Lemma 2.10. Let A ⊆ B be a module-finite inclusion of graded K-algebras with B polynomial. If
the map µ : A+ ⊗A B −→ B induced by multiplication is injective, then A is regular.

Proof. Suppose that the map µ : A+ ⊗A B −→ B induced by multiplication is injective. Then the
short exact sequence

0 −→ A+ −→ A −→ K −→ 0
induces the long exact sequence

0 −→ TorA1 (B,K) −→ A+ ⊗A B −→ A⊗A B −→ K ⊗A B −→ 0,

and the map A+⊗A B −→ A⊗A B � B is µ. Thus, µ is injective implies that TorA1 (B,K) = 0, and
hence B is free over A by Nakayama’s Lemma.

Now let F be the minimal graded resolution of K over A. If B is free over A, then B⊗A F is
exact, and is a minimal free resolution of B⊗A K . Since B is regular, this resolution is finite. It
follows that F is finite, and hence A is regular. �

Proof of Shephard-Todd. (1) Following the lemma, we show that the multiplication map

µ : R+ ⊗R S −→ S

is injective.
First we claim that the restriction of µ to (R+ ⊗R S)G is injective. This is where we use the

Reynolds operator. Indeed, from the diagram

S

��
R //

??

R

 R+ ⊗R S

&&
R+ ⊗R R

88

// R+ ⊗R R
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we have that R+ ⊗R R injects into R+ ⊗R S , and

(R+ ⊗R S)G = ρ(R+ ⊗R S) = R+ ⊗R ρ(S) = R+ ⊗R R

so we can identify (R+ ⊗R S)G = R+ ⊗R R . But µ restricted to R+ ⊗R R is injective.
Now we will show that a nonzero element of ker(µ) of monomial degree is G invariant. Let g

be a pseudoreflection and V g = V (`) be its fixed space with ` a linear form. For any f ∈ S , the
functions f and g(f ) agree on V g , so g(f )− f is zero on V g , and hence ` | (g(f )− f ). Write
g(f )− f = `f ′ . In the same way, if ζ ∈ R+ ⊗R S homogeneous, we can write

(1− g)ζ = ζ′(1⊗ `)

for some ζ′ of degree one less.
Let ζ be an element in ker(µ) of minimal degree. We claim that ζ is fixed by G. Indeed,

g(ζ) ∈ ker(µ), since µ(g(ζ)) = g(µ(ζ)) = 0, so

0 = µ(ζ)−µ(g(ζ)) = µ((1− g)ζ) = µ((1⊗ `)ζ′) = `µ(ζ′).

Then since S is a domain, µ(ζ′) = 0, and by minimality of degree, ζ′ = 0, so g(ζ) = ζ. Now, G
is generated by pseudoreflections g , so

ζ ∈ (R+ ⊗R S)G = R+ ⊗R R,

as claimed. This completes the argument.
(2) We consider the special case K = C. Suppose that R = SG is a polynomial ring. Then

V /G = Spec(R), considered as a variety, is a copy of Cn, as is V = Spec(R).
Let X ⊆ V = Spec(S) be

X =
⋃
g∈G

not pseudoreflection

Fix(g).

Let us write V /G = Spec(R) and π : V −→ V /G. Note that X is G-stable: if x is fixed by a
nonpseudoreflection h, and g ∈ G, then gx is fixed by ghg−1, which is conjugate to h, and hence
also a nonpseudoreflection. Then since X ⊆ V has codimension ≥ 2, then π(X) ⊆ V /G has
codimension at least two (as a complex variety) by going down. In particular, it has codimension
strictly greater than two over R, so �V /G := (V /G)rπ(X) is simply connected.

Let Ṽ = V rX, which is a dense open subset of V with

π : Ṽ −→�V /G = Ṽ /G.

By definition, the stabilizer of any v ∈ Ṽ must consist only of pseudoreflections. Let N be the
subgroup of G generated by all g ∈ G that fix some point in Ṽ ; this is a normal subgroup.
Consider the orbit space Ṽ /N . This has an induced action of G/N , and this action is free
(no fixed points) by construction. Thus, Ṽ /N −→�V /G is a covering space, and since Ṽ /N is
connected and �V /G is simply connected, this must be a homeomorphism. Then, for degree
reasons, we deduce that G =N . �

The proof of Shepard-Todd is not constructive, but the following is useful in arbitrary char-
acteristic.

Proposition 2.11. Let G be a finite group acting linearly on S . Then if R = SG is a polynomial ring,
we have R = K[f1, . . . , fn] with deg(f1) · · ·deg(fn) = |G|.
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Proof. Note that when R = SG is a polynomial ring, then R is a Noether normalization for S ,
so S is a free R-module (because R is Cohen-Macaulay), and from an earlier Proposition, of
rank |G|.

Let di = deg(fi). Using the Noether normalization formula we have

HS(t) =
1

(1− t)n
=

∑
j t
ej∏

i(1− tdi )
=

∑
j t
ej∏

i

(
(1− t)(1 + t + · · ·+ tdi−1)

) ,
where the sum

∑
j t
ej has |G| summands. Then multiplying by (1 − t)n and taking limt−→1,

we get

1 =
|G|∏
i di
,

and the claim follows. �

We now want to prove a theorem of Kemper about the Cohen-Macaulay property in the
modular case. To state it we need the following.

Definition 2.12. Let G be a finite group acting linearly on S = K[x1, . . . ,xn]. We say that g is a
bireflection if codimK (Fix(g,V )) ≤ 2.

Theorem 2.13 (Kemper). Let G be a p-group acting linearly on S with K have characteristic p. If
SG is Cohen-Macaulay, then G is generated by bireflections.

We need to return to the transfer map for part of the proof. We will need a generalization of
the construction.

Let G be a finite group acting linearly on S , and H be a subgroup. Let G/H denote the left
cosets of H in G. We define

TrGH : SH −→ SG TrGH (s) =
∑

gH∈G/H
g(s).

Lemma 2.14. (1) The function TrGH is independent of choice of representatives for G/H .
(2) The function TrGH outputs elements in S

G.
(3) The function TrGH is S

G-linear.
(4) TrGH restricted to S

G is multiplication by [G :H].
(5) If N ≤H ≤ G then TrGN = TrGH ◦Tr

H
N .

Theorem 2.15. Let K be a field of characteristic p, and G be a finite group acting linearly on S .
Let N be a normal subgroup of G. Then

V (TrGN (S) · S) =
⋃

ordG/N (gN )=p

Fix(g,V ).

Proof. Take K algebraically closed. Let v ∈ Fix(g,V ) with gp ∈ N , so v is an element of the
right-hand side of the equation int he statement. Then set H = 〈N,g〉, and note that [H :N ] = p
with classes represented by 1, g, . . . , gp−1. Take f ∈ SN . By definition,

TrHN (f ) =
p−1∑
i=0

g i(f )
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so

TrHN (f )(v) =
p−1∑
i=0

g i(f )(v) =
p−1∑
i=0

f (g i(v)) =
p−1∑
i=0

f (v) = pf (v) = 0.

This is true for all f ∈ SN , so v ∈ V (TrGN (S) · S).
For the other containment, For simplicity of notation, we stick to the case N = {e}. Suppose

that v is not in the right-hand side, and let m be the corresponding maximal ideal. It suffices to
find r ∈ R such that TrG(r) < m. Let H = Stab(v). By hypothesis, there is no element of order
p in H , so p does not divide |H |. We have the factorization

R
TrG−−−→ RG = R

TrH−−−→ RH
TrGH−−−→ RG

and TrH restricted to RH is mutliplication by the unit |H |, and hence TrH is surjective, so it
suffices to find r ∈ RH with TrGH (r) <m. Given distinct coset representatives g1 = e,g2, . . . , gk for
G/H , since Stab(m) ⊆H , the maximal ideals

m, g−12 (m), . . . , g−1k (m)

are distinct. We can take r ∈ g−1i (m) for i , 1 and r <m. If we replace r with NH (r), the same
conditions hold, so without loss of generality, r ∈ RH . Then

TrGH (r) = r + g2(r) + · · ·+ gk(r),

and r <m, while gi(r) ∈m for all other i, so TrGH (r) <m. This completes the argument. �

Proof of Kemper’s Theorem. Let H be the subgroup generated by bireflections. If H , G, then
there is a maximal proper subgroup N containing H , so [G : N ] = p. By considerations of
prime factors, N is normal. By the previous theorem,

V (TrGN (S
N )S) = Fix(g,V )

where gN is a generator for G/N . Since g is not a bireflection, Fix(g,V ) is a linear space of
codimension at least three, so the height of TrGN (S

N )S is at least three, and hence likewise with
TrGN (S

N ).
Suppose SG is Cohen-Macaulay. Then there is a regular sequence f1, f2, f3 ∈ TrGN (SN ). Write

fi = TrGN (hi) = hi + g(hi) + · · ·+ gp−1(hi) = (g − 1)p−1(hi) for hi ∈ SN . Write f ′i = (g − 1)p−2(hi),
so fi = (g − 1)(f ′i ). One can check that f ′i ∈ S

N .
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One has

f1

∣∣∣∣∣f2 f3
f ′2 f ′3

∣∣∣∣∣+ f2 ∣∣∣∣∣f3 f1
f ′3 f ′1

∣∣∣∣∣ = f3 ∣∣∣∣∣f2 f1
f ′2 f ′1

∣∣∣∣∣ ,
and

(g − 1)(fif ′j − fjf
′
i ) = 0

so fif
′
j − fjf

′
i ∈ S

G for all i, j . Since f1, f2, f3 ∈ SG is a regular sequence, we have

f2f
′
1 − f1f

′
2 = a1f1 + a2f2

for some a1, a2 ∈ SG, and hence

f1(a1 + f
′
2 ) = f2(f

′
1 − a2),

and thus, again,
f ′1 − a2 ∈ (f1)S

G,

so f ′1 ∈ SG. But then f1 = (g − 1)f ′1 = 0, a contradiction. �
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Problem Set #2

(1) Use the Shephard-Todd Theorem to determine for which of the following group actions
on S =C[x,y] the invariant ring is a polynomial ring.

(a) G = 〈
[
ω 0
0 1

]
〉, where ω = e2πi/3.

(b) G = 〈
[
ω 0
0 ω2

]
〉.

(c) G = 〈
[
ω 0
0 −1

]
〉.

(2) Find primary and secondary invariants for the following group actions.
(a) S =C[x1,x2], G =Z/2 = 〈g〉 with g(xi) = −xi .
(b) S =C[x1,x2], G =Z/3 = 〈g〉 with g(xi) = ωxi , where ω = e2πi/3.

(3) Let K = F2, and let G = Z/2 act on S = K[x1,x2,x3, y1, y2, y3] by swapping xi with yi
for each i. In this problem, we will verify directly (without the use of Kemper’s Theorem)
that R = SG is not Cohen-Macaulay.
(a) Show that {xi + yi ,xiyi | i = 1,2,3} is a homogeneous system of parameters for R.
(b) Show that HR(t) =

1+3t2
(1−t)3 (1−t2)3 .

(c) Show that R if Cohen-Macaulay then R is a free K[xi + yi ,xiyi]-module with basis 1
and {xiyj − xjyi | 1 ≤ i < j ≤ 3}.

(d) Find a relation on the elements above and deduce that R is not Cohen-Macaulay.

(4) Let K be a field and G a finite group such that Hom(G,K×) = {1}. In this problem we
will show that R = SG is a unique factorization domain.
• First, show that if G is a p-group and char(K) = p, then the hypothesis applies.

Let r ∈ R. Take an S-irreducible decomposition r = s1 · · ·st . The group G partitions the
principal ideals (si)S into orbits, and let t1, . . . , t` be the orbit products, so r = t1 · · · t` .
• Show that ti ∈ R. Hint: For each g ∈ G, there is θ(g) ∈ S× such that g(ti) = θ(g)ti .
Show that θ is a group homomorphism.
• Show that ti ∈ R is irreducible.
• Show that r = t1 · · · t` is the unique irreducible decomposition of r .

(5) Let G =Z/4 act on F2[x1,x2,x3,x4] by cyclically permuting the variables. Use the results
above to deduce that SG is a unique factorization domain that is not Cohen-Macaulay.

(6) Let K be a finite field and

A =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,B =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 ,C =


1 0 1 1
0 1 1 1
0 0 1 0
0 0 0 1

 .
(a) Is G = 〈A,B,C〉 generated by pseudoreflections? Does Shephard-Todd apply?
(b) Show that S〈A,B〉 = K[x1,x2,N (x3),N (x4)].
(c) Show that if SG is a polynomial ring, the generators live in degrees 1,1,p,p2.
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(d) Show that SG has no generator of degree p and deduce that SG is not a polynomial
ring.

(e) Show that, moreover, every point stabilizer of G is generated by pseudoreflections.

(7) Modify the proof of Shephard-Todd to show that if R = SG is a polynomial ring, then for
each v ∈ V , the group Stab(v) ≤ G is generated by pseudoreflections. (You can keep the
hypothesis K = C as we did in the proof.) Now show that the previous example is such
that for each v ∈ V , the group Stab(v) ≤ G is generated by pseudoreflections.

(8) Let f1, . . . , fn be a homogeneous system of parameters for R = SG. Show that
deg(f1) · · ·deg(ft) =m|G| for some integer m ≥ 1, and when m = 1, this system of pa-
rameters generates R as an algebra.
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