
THE FROBENIUS MAP: THE POWER OF PRIME CHARACTERISTIC

JACK JEFFRIES

These are lecture notes and exercises for a short graduate lecture series on positive char-
acteristic methods for the SLMath/SMS Summer School An Introduction to Recent Trends in
Commutative Algebra in June 2025. My goal in this series is to give an appreciation for the
power of techniques involving the Frobenius map to prove statements that have nothing to do
with Frobenius. It is not my goal to thoroughly develop the tools needed for research in this
area. The audience has a varied background, so I am not assuming any background beyond a
first year graduate sequence on algebra. There is not enough time in this course to cover back-
ground material from commutative algebra and homological algebra in addition to the specific
content of these lectures, so instead I will often give statements that are specialized to more
concrete situations rather than giving the most general statements, and sometimes also offer a
“more generally version” for those have have additional background. For time reasons, I will
often sketch proofs, occasionally leaving some details to the exercises.

In the first lecture, I will discuss the basic perspectives and terminology of the Frobenius map.
The first problem set is intended to solidify these notions, though there are also a few problems
that build towards the later lectures. The second lecture will briefly introduce tight closure and
an application. The third lecture will introduce a couple of notions of F-singularities and outline
a couple more applications. The second problem set will explore the notions from the last two
lectures, and fill in some details of the proofs.
Throughout these notes, all rings are commutative with 1 , 0, and p will denote a positive

prime integer.

1. Basics with the Frobenius map

Recall that a ring R has characteristic p if

p = 1+ · · ·+1︸     ︷︷     ︸
p times

is zero in R. This is equivalent to R containing a field of characteristic p as a subring: if R has
characteristic p, the image of the homomorphism Z −→ R is isomorphic to Fp.

The Frobenius map. Let us start with an observation about binomial coefficients. For any
integer i with 0 < i < p, the binomial coefficient(

p
i

)
=

p!
(p − i)! · i!

has a factor of p in the numerator, but not the denominator. Since we also know this coefficient
is an integer, e.g., for combinatorial reasons, the Fundamental Theorem of Arithmetic says that
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it is a multiple of p. Thus, when R has characteristic p, for any r, s ∈ R, one has

(r + s)p = rp +
(
p
1

)
rp−1s+

(
p
2

)
rp−2s2 + · · ·+

(
p

p − 1

)
rsp−1 + sp

= rp + sp, and

(rs)p = rpsp,

and 1p = 1, so the map
F : R −→ R, F(r) = rp

is a ring homomorphism from R to itself, called the Frobenius map on R. We may denote this
as FR to indicate the ring when useful.
One can apply the Frobenius map multiple times:

Fe : R −→ R, Fe(r) = rp
e

which we may call the e-th Frobenius or e-th Frobenius iterate. Note that no power map is a
ring homomorphism in characteristic zero.

Example 1.1. For R = Fp the Frobenius map is the identity: this is Fermat’s Little Theorem.

Example 1.2. For R = Fp[x], the Frobenius map is given by

F(anx
n + · · ·+ a1x+ a0) = anxpn + · · ·+ a1xp + a0

and the iterates by

Fe(anx
n + · · ·+ a1x+ a0) = anxp

en + · · ·+ a1xp
e
+ a0.

Every ring of characteristic p has a Frobenius map, and the Frobenius map is compatible with
every ring homomorphism between rings of characteristic p:

R
ϕ
//

FR
��

S

FS
��

R
ϕ
// S

r � //
_

��

ϕ(r)
_

��
rp � // ϕ(rp) = ϕ(r)p.

This universality and naturality is a clear sign of the importance of the Frobenius map.

Injectivity and surjectivity. Let us start with a simple relationship between the Frobenius map
and something that has nothing to do with it.

Lemma 1.3. Let R be a ring of characteristic p. The Frobenius map on R is injective if and only if
R is reduced (meaning that R has no nonzero nilpotents).

Proof. We will prove the contrapositive of each direction. (⇐) : If FR is not injective, then there
is some r , 0 with rp = 0; such an element is a nonzero nilpotent of R.

(⇒): If R is not reduced, then there is some r , 0 with rn = 0 for some n ≥ 2. Take n
maximal such that rn , 0; then np > n, so F(rn) = rpn = 0, and rn is a nonzero element of the
kernel of FR. �

It is rarer for the Frobenius map to be surjective. The image of the Frobenius map is evidently
the p-th powers of elements in R. A ring of positive characteristic is perfect if its Frobenius
map is bijective. You are likely familiar with this consideration for fields. Perfect fields include
all finite fields, like Fp and Fp7 , and all algebraically closed fields, like Fp and Fp(t). However,
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a field like Fp(t) is not perfect, as t is not a p-th power. However Fp[x] is evidently not perfect.
One can show that when R is Noetherian then FR is surjective if and only if R is a finite product
of perfect fields.

Alternative perspectives. One of the most confusing aspects of the Frobenius map is the fact
that the source and target are the same, though the map is typically not an isomorphism. It is
often useful to separate the source and target of the Frobenius to clarify the situation. One can
think of this as analogous to the case of linear algebra, where some aspects of an endomorphism
of a vector space are easier to understand with separate bases on the source and target.

Our first alternative perspective on Frobenius is based on renaming the target copy of R. We
will decorate every element in the target of the e-th Frobenius Fe with the decoration Fe∗ . That
is, Fe∗R is just an collection of doppelgängers of elements R:

Fe∗R = {Fe∗ r | r ∈ R}
Fe∗ r +F

e
∗ s = F

e
∗ (r + s) and Fe∗ rF

e
∗ s = F

e
∗ (rs),

so the map

R −→ Fe∗R r 7−→ Fe∗ r

is an isomorphism. After rewriting “target R” as Fe∗R via the isomorphism above, the e-th
Frobenius map takes the form

R −→ Fe∗R r 7−→ Fe∗ (r
pe).

One should think of this as follows: the e-th Frobenius map sends r −→ rp
e
, and the Fe∗ symbol

simply says which copy of R the element rp
e
lives in. Put another way, we have the commutative

diagram

R

=
��

Fe // R

�
��

R // Fe∗R

r � //
_

��

rp
e

_

��

r � // Fe∗ (r
pe)

where the bottom row is the Frobenius from R −→ Fe∗R and the right map is the isomorphism
“adding the decoration Fe∗ ”.

When R is a domain, there is another useful way to think of Fe∗R. In this case, R has a field of
fractions K , which admits an algebraic closure K . Every element of R has a unique pe-th root
r1/p

e
in K , as K is a perfect field. Define

R1/pe := {r1/p
e
∈ K | r ∈ R}.

One can verify that R1/pe is a subring of K , and the map

R −→ R1/pe r 7−→ r1/p
e

is a ring isomorphism. We can think of the exponent 1/pe as a decoration that yields an
isomorphic copy of R. After rewriting “target R” as R1/pe via this isomorphism, the Frobenius
map takes the form

R −→ R1/pe r 7−→ (rp
e
)1/p

e
= r.
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That is, after the identification above, the Frobenius map identifies with the inclusion of
R ⊆ R1/pe . Put another way, we have the commutative diagram

R

=
��

Fe // R

�
��

R // R1/pe

r � //
_

��

rp
e

_

��

r � // r = (rp
e
)1/p

e
,

where the bottom row is the inclusion map and the right map is the isomorphism R � R1/pe

of taking pe-th roots. This notion of roots equally well makes sense when R is reduced: in
this case, R embeds into product of fields, which embeds into a product of algebraically closed
fields, where every element again has a unique pe-th root.
A third perspective on the Frobenius on a reduced ring is by identifying the source of Frobe-

nius with Rp
e
, the subring consisting of pe-th powers of elements of R. In this case, the Frobenius

map corresponds to the inclusion map Rp
e ⊆ R.

Typical constructions. We now discuss some typical constructions for ring maps applied to
special case of the Frobenius. For a general ring homomorphism ϕ : A −→ B, one has the notion
of extension of an ideal I ⊆ A given as the ideal of B given by (ϕ(a) | a ∈ I). This leads to the
notion of Frobenius powers. Given an ideal I ⊆ R, we define the Frobenius powers of I as

I [p
e] = (ap

e
| a ∈ I) = (Fe(a) | a ∈ I).

If I = (a1, . . . , at), then I [p
e] = (ap

e

1 , . . . , a
pe

t ), as is the case in general for extension of ideals.
Observe that I [p

e] ⊆ Ipe , but these are typically different when I is not principal.
Another important construction comes from restriction of scalars. For a general ring homo-

morphism ϕ : A −→ B, one can view B as an A-module by restriction of scalars: B becomes an
A-module by the rule a · b = ϕ(a)b. One can view R as an R-module by restriction of scalars
through Fe, so R acts on R by the rule

r · s = rp
e
s.

It is especially helpful to use the alternative notations for the Frobenius map in this setting.
Consider the Frobenius map in the form

R −→ Fe∗R r 7−→ Fe∗ (r
pe).

The R-module action on Fe∗R is then

r ·Fe∗ s = Fe∗ (rp
e
s).

For R reduced, we may also consider the Frobenius map in the form

R ⊆ R1/pe .

The R-module action on R1/pe is then the straightforward action

r · s1/p
e
= rs1/p

e
= (rp

e
s)1/p

e
.

We will return to discuss this structure in great detail for a polynomial ring soon.
One can also apply the restriction of scalars to an arbitrary R-module. For a general ring

homomorphism ϕ : A −→ B, and B-module N , one can view N as an A-module by restriction
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of scalars: N becomes an A-module by the rule a ·n = ϕ(a)n. To apply this with the Frobenius
map, we let M be an R-module. Let us think of the Frobenius map in the form

R −→ Fe∗R r 7−→ Fe∗ (r
pe),

and think of M as a module over the target; we will rewrite M as

Fe∗M = {Fe∗m | m ∈M}
with Fe∗R-action

Fe∗ r ·Fe∗m = Fe∗ (rm).
The action of R on Fe∗M is then

r ·Fe∗m = Fe∗ (r
pe)Fe∗m = Fe∗ (r

pem).

Finally, we discuss extension of scalars. For a general ring homomorphism ϕ : A −→ B, and
A-moduleM, one can create a new B-module by extension of scalars. The construction is most
naturally stated in terms of tensor products, but we give a slightly more concrete construction.
One can writeM in terms of generators and relations: M has generating set {mi}i with relations
{
∑
i aijmi}j , meaning

∑
i aijmi = 0 in M for all j, and that these generate the tuples of relations

on these generators. The module ϕ∗M is then the B-module with generating set {mi}i with
relations {

∑
iϕ(aij)mi}j . To apply this with the Frobenius map, we letM be an R-module. IfM

is as above, the Frobenius restriction of scalars module is the R-module Fe∗(M) with generating

set {mi}i with relations {
∑
i a
pe

ijmi}j .

Polynomial rings and Kunz’ Theorem. We will now analyze the R-module structure of Fe∗R
in detail in an important case.

Theorem 1.4. Let K be a perfect field of characteristic p, and S = K[x1, . . . ,xn] be a polynomial
ring in n variables over K . Then Fe∗S is a free S-module with basis

B = {Fe∗ (x
a1
1 · · ·x

an
n ) | 0 ≤ ai < pe}.

Proof. We need to show that every element of Fe∗S can be written as an S-linear combination of
the elements above.

Every element of Fe∗S is a sum of elements of the form Fe∗ (γx
b1
1 · · ·x

bn
n ) with γ ∈ K and

b1, . . . ,bn ≥ 0. Write bi = peci + ai with 0 ≤ ai < pe. Then

Fe∗ (γx
b1
1 · · ·x

bn
n ) = Fe∗ (γx

pec1+a1
1 · · ·xp

ecn+an
n )

= Fe∗ (γx
pec1
1 · · ·xp

ecn
n )Fe∗ (x

a1
1 · · ·x

an
n )

= γ1/pexc11 · · ·x
cn
n ·Fe∗ (x

a1
1 · · ·x

an
n )

.

Note that we have used that K is perfect in the last step. This shows that the purported basis
spans.

To see this set is linearly independent, suppose that we have some β1, . . . ,βt ∈ B and s1, . . . , st ∈ S
such that

∑
i siβi = 0. Note that in a product

siβi = si ·Fe∗ (x
a1
1 · · ·x

an
n ) = Fe∗ (s

pe

i x
a1
1 · · ·x

an
n ),

every monomial occurring in the polynomial s
pe

i x
a1
1 · · ·x

an
n has exponents b1, . . . , bn such that

bi ≡ ai mod pe. In particular, writing each siβi as Fe∗ of some polynomial as above, the
polynomials that occur have mutually distinct monomials, and thus cannot cancel each other.
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It follows that siβi = 0 for each i, which implies si = 0 for each i. This shows that B is a free
basis. �

Intuitively, this proof shows that viewing S as the S-module Fe∗S breaks apart into pieces of the
form S · Fe∗ (x

a1
1 · · ·x

an
n ) consisting of all polynomials whose exponent vectors are coordinatewise

congruent to (a1, . . . , an). Various applications of the Frobenius are based on taking an element
of S , viewing it as an element Fe∗S , and breaking it into its components in this free S-basis, or
equivalently, applying S-linear maps from Fe∗S back to S . We will return to this idea soon.
This decomposition a special case of the “Fundamental Theorem of Frobenius”.

Theorem 1.5 (Kunz). Let R be a Noetherian ring of characteristic p, and let e ≥ 1. The module Fe∗R
is a flat R-module if and only if R is a regular ring.

A flat module is a weakening of free module (free implies flat), and a polynomial ring over a
field is a key example of a regular ring.
We end with a technical definition that is useful for many purposes.

Definition 1.6. A ring R of characteristic p is F-finite if F∗R is a finitely generated R-module;
equivalently, Fe∗R is a finitely generated R-module for all e.

This is a finiteness property, somewhat akin to Noetherianity. In the exercises, you will show
that every finitely generated algebra over a perfect field is F-finite. We can get a more concrete
version of Kunz’ theorem when R is F-finite and local. Recall that a local ring is a ring with a
unique maximal ideal. We often write (R,m) for a local ring to denote R and its maximal ideal,
or (R,m, k) to denote the residue field k = R/m as well. Given any ring R and prime ideal p, we
can obtain a local ring Rp for adjoining inverses to every element outside of p, a process called
localization.

A typical example of a local ring is, for a field K and some variables x1, . . . ,xn, the collection
of rational functions for the form{

f (x)
g(x)

∣∣∣ g(x) has nonzero constant term

}
.

This is the local ring K[x1, . . . ,xn](x1,...,xn) obtained from the polynomial ring by localization
at the prime (maximal) ideal consisting of polynomials with constant term zero. Another key
example of a local ring is the power series ring K~x1, . . . ,xn�. These are the two typical
examples to keep in mind of regular local rings.

Corollary 1.7 (Kunz). Let (R,m) be an F-finite Noetherian local ring of characteristic p. The module
Fe∗R is a free R-module if and only if R is a regular ring.

Example 1.8. If K is a perfect field and S is either

K[x1, . . . ,xn](x1,...,xn) or K~x1, . . . ,xn�,

then Fe∗S is free with basis
B = {Fe∗ (x

a1
1 · · ·x

an
n ) | 0 ≤ ai < pe}

as in the polynomial case.
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Exercise set #1

Throughout this problem set all rings have characteristic p.

(1) * Convince yourself, as succinctly as possible, that r ∈ I if and only if Fe∗ r ∈ Fe∗ I .
(2) Let S = F3[x,y]. Find an element in (x,y)3 that is not in (x,y)[3].
(3) Let S = F3[x,y]. Write out the free basis B for F∗S from the proof of Theorem 1.4 and

write the element F∗(2x6y7 + x5y3 + x3y4 +2xy2) as an S-linear combination of B.
(4) Let p be a prime ideal in R. Show that F−1(p) = p.
(5) * Let R be a ring and I be an ideal. Show that Fe∗ (I

[pe]) = IFe∗ (R).
(6) Show that Rp

e
= {rpe | r ∈ R} is a subring of R.

(7) Suppose that R is reduced. Show that R � Rp
e
, and that after identifying the source

of the e-th Frobenius map with Rp
e
via the isomorphism you found, the Frobenius map

identifies with the inclusion map Rp
e ⊆ R.

(8) * Let R = Fp[x,y]/(xy).
(a) Explain why R has Fp-vector space basis {1,x,x2,x3, . . . , y,y2, y3, . . . } (where, by

abuse of notation, we write x for the equivalence class of x in the quotient).
(b) Find an Fp-vector space basis for F

e
∗R, and describe the action of R on Fe∗R explicitly

in terms of the action of each basis element of R with each basis element of Fe∗R.
(c) Show that the ideal (x) of multiples of x in R is isomorphic to R/(y) as an R-module.
(d) Show that, as R-modules,

Fe∗R � R ·Fe∗1⊕
⊕
0<i<pe

R/(y) ·Fe∗ (xi)⊕
⊕
0<j<pe

R/(x) ·Fe∗ (yj).

(9) Let R = F2[x2,xy,y2]; i.e., R is the subring of the polynomial ring F2[x,y] with F2
vector space basis consisting of {xiyj | i + j is even}. Find a generating set for F∗R as an
R-module. Is your generating set a free basis?

(10) Let K = Fp(t1, t2, t3, . . . ), the field of rational functions over Fp in countably many vari-
ables. Is K an F-finite field?

(11) (a) Let R be an F-finite ring and I be an ideal. Show that R/I is also F-finite.
(b) Let R be an F-finite ring and x be an indeterminate. Show that R[x] is also F-finite.

Deduce that every finitely generated algebra over a perfect field is F-finite.
(12) Let R be as in (9). Verify directly that F∗R has no free basis.

It may be useful to use the fact that if M is a free R-module with basis B and I is an
ideal, then M/IM is a free R/I-module with basis given by the images of B; try different
maximal ideals.

*To be used later in the lectures.
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(13) § Let K be a perfect field and S = K[x1, . . . ,xn]. Consider HomS(Fe∗S,S), the set of
S-linear maps from Fe∗S to S . Let A = {(a1, . . . , an) ∈Zn | 0 ≤ ai < pe}.
(a) Show that for each α ∈ A, there is a map Φα ∈HomS(Fe∗S,S) such that

Φα(F
e
∗ (x

a1
1 · · ·x

an
n )) =

{
1 if (a1, . . . , an) = α
0 if (a1, . . . , an) ∈ Ar {α}.

(b) Consider HomS(Fe∗S,S) as an S-module by the rule s · ϕ(−) = sϕ(−). Show that
HomS(Fe∗S,S) is a free S-module with this action, and find a basis.

(c) Consider HomS(Fe∗S,S) as an F
e
∗S-module by the rule Fe∗ s ·ϕ(−) = ϕ(Fe∗ s · −). Show

thatHomS(Fe∗S,S) is a free F
e
∗S-module with basis the singleton {Φ := Φ(pe−1,...,pe−1)}.

(14) Let R be a ring and I be an ideal. Show that Fe∗(R/I) � R/I [p
e].

(15) † Let W be a multiplicatively closed subset of R. Show that Fe∗ (W
−1R) �W −1Fe∗R.

(16) Let K = Fp(t1, t2, t3, . . . ), and R = K~x�. Show that F∗R is not a free module. Compare
with Corollary 1.7.

(17) Let R be a ring and I be an ideal. Is Fe∗(I) � I [p
e] in general?

(18) Let R be a ring containing Q, let n be a positive integer, and I an ideal of R. Show that
the ideal (an | a ∈ I) is equal to In. Compare to problem (2).

(19) † Let R be a Noetherian ring of positive characteristic. Show that FR is surjective if and
only if R is a finite product of perfect fields.

(20) † Let R be an F-finite Noetherian ring. Show that the singular locus of R is a closed
subset of Spec(R).

(21) † Let R be a regular Noetherian ring and M be a finitely generated module.
(a) Show that AssR(M) = AssR(Fe∗M) for all e.
(b) Show that AssR(M) = AssR(Fe∗M) for all e.
(c) Do the statements (21a) and (21b) hold if R is not assumed to be regular?

§To be used in Problem set #2.
†Requires some background from Commutative Algebra.
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2. Tight closure

We now discuss a notion based on the Frobenius map that has many powerful applications.

Definition 2.1. Let R be a ring of characteristic p and I ⊆ R be an ideal. The Frobenius
closure of I is the ideal

IF := {a ∈ R | ap
e
∈ I [p

e] for some e > 0}.

Definition 2.2 (Hochster-Huneke). Let R be a domain of characteristic p and I ⊆ R be an ideal.
The tight closure of I is the ideal

I ∗ := {a ∈ R | ∃c , 0 : cap
e
∈ I [p

e] for all e� 0}.
When R is not necessarily a domain, we instead insist that c is not in any minimal prime ideal
of R.

It follows from the definitions that I ⊆ IF ⊆ I ∗. These are notions that say that an element
is in asymptotically in I , in various senses. The main fact about tight closure we will observe
today is the following:

Theorem 2.3. Let S be a polynomial ring over a perfect field K (or more generally, a regular ring of
characteristic p). Then for any ideal I ⊆ S , we have I ∗ = I .

The statement may look a bit odd, but the point of the theorem is that it can be much easier
to check that an element is in I ∗ rather than I . We need a lemma to prepare for the proof.

Lemma 2.4. Let ϕ : A −→ B be a homomorphism of rings such that B is a free (or more gen-
erally, flat) A-module by restriction of scalars, and let I be an ideal of A, and f ∈ A. Then
(IB :B f ) = (I :A f )B.

Proof. The containment ⊇ follows from the definitions without assuming anything about B. For
the other containment, let g ∈ (IB :B f ), so there exist ai ∈ I and bi ∈ B such that

gf =
∑
i

aibi .

Let {βj} be a basis for B as an A-module, so we can write

g =
∑
j

gjβj bi =
∑
j

bijβj

for some gj ,bij ∈ A. Then substituting in we get∑
j

gjβj

f =
∑
i

ai

∑
j

bijβj


∑
j

f gjβj =
∑
j

∑
i

aibij

βj
Now, using the A-linear independence of βj , we get equations of the form

f gj =
∑
i

aibij ,

so gj ∈ (I :A f )B; then since g is a B-linear combination of gj , we have g ∈ (I :A f )B. �
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Proof of Theorem 2.3. We always have I ⊆ I ∗ so there is only one containment left to show. Let
a ∈ I ∗, so there exists c , 0 with cap

e ∈ I [pe] for all e� 0. In particular, for e� 0 have

c ∈ (I [p
e] :S a

pe)

Let us consider the analogue of this same containment in Fe∗R:

Fe∗ c ∈ (Fe∗ (I [p
e]) :Fe∗S F

e
∗ (a

pe)) = (IFe∗S :Fe∗S a),

where we have applied the exercise. By the Lemma and Kunz’ Theorem, we have

Fe∗ c ∈ (I :S a)Fe∗S = Fe∗
(
(I :S a)

[pe]
)
,

again using the exercise. That is,
c ∈ (I :S a)[p

e].

If a < I , then (I :S a) $ S and

c ∈
⋂
e�0

(I :S a)
[pe] ⊆

⋂
e�0

(I :S a)
pe = 0,

a contradiction. Thus, we must have a ∈ I . �

Let us illustrate a typical application of tight closure. By way of motivation, let K be a field,
and R = K[x] be a polynomial ring in one variable. Given any two elements f ,g ∈ R, we claim
that f g ∈ (f 2, g2). To see it, let d be the GCD of f and g , and write f = df ′ and g = dg ′ . Then
f ′ and g ′ are coprime and R is a PID so we can find r, s with rf ′ + sg ′ = 1. Then

f g = d2f ′g ′ = d2f ′g ′(rf ′ + sg ′) = rg ′(d2f ′2) + sf ′(d2g ′2) = rg ′f 2 + sf ′g2 ∈ (f 2, g2).
Now take a polynomial ring in two variables K[x,y]. The previous argument certainly fails

since R is not a PID, and even more convincingly since

xy < (x2, y2).

The next best thing to hope for that for any f ,g,h ∈ K[x,y] we have f gh ∈ (f 2, g2,h2). This is
also false; we learned the following example from Anurag K. Singh:

(xy)(x2 − y2)(x2 + y2) <
(
(xy)2, (x2 − y2)2, (x2 + y2)2

)
,

at least if K has characteristic other than two.
However, the next best thing is true: for any f ,g,h ∈ K[x,y] we have f 2g2h2 ∈ (f 3, g3,h3).

Theorem 2.5. Let K be a field, and S = K[x1, . . . ,xn] be a polynomial ring in n variables over K .
Then for any f1, . . . , fn+1 ∈ S , the containment

f n1 · · ·f
n
n+1 ∈ (f

n+1
1 , . . . , f n+1n+1 )

holds.

We will prove this theorem in the case that K algebraically closed of characteristic p, and
n = 2 just to keep notation simpler. One can in fact deduce the theorem for all fields from this
case. The Theorem holds more generally when S is a regular local ring of dimension n, though
it requires different techniques in mixed characteristic.

Lemma 2.6. Let R be a local ring of dimension n with an infinite residue field, f ∈ R, and I be
an ideal of R. If f s ∈ I s for some s, then there exists c not in any minimal prime of R such that
cf t ∈ (`1, . . . , `n)t for all t� 0, where `1, . . . , `n are n general linear combinations of the generators
of I .
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The Lemma follows from some standard facts in integral closure theory; we outline a self-
contained proof in the next exercise set.

Proof of Theorem 2.5 for K of positive characteristic. Standard reductions allow us to replace the
polynomial ring with a regular local ring R of dimension n with an infinite residue field. Let’s
just do the case n = 2 for simplicity.
Let f ,g,h ∈ R a regular local ring of dimension two with infinite residue field. We need to

show that (f gh)2 ∈ (f 3, g3,h3). Observe that (f gh)3 ∈ (f 3, g3,h3)3. We can apply the Lemma
to get some c , 0 such that c(f gh)t ∈ (`1, `2)t for t� 0. Now take e� 0 and set t = 2pe:

c(f gh)2p
e
∈ (`1, `2)2p

e
⊆ (`2p

e

1 , `
2pe−1
1 `2, . . . , `

pe

1 `
pe

2 , . . . , `1`
2pe−1
2 , `

2pe

2 )

⊆ (`p
e

1 , `
pe

2 ) = (`1, `2)
[pe] ⊆ (f 3, g3,h3)[p

e].

We can rewrite this as
c
(
(f gh)2

)pe
∈ (f 3, g3,h3)[p

e]

for e� 0. This means that (f gh)2 ∈ (f 3, g3,h3)∗. By Theorem 2.3, we deduce that (f gh)2 ∈ (f 3, g3,h3).
The proof for n > 2 is similar. �

The last thing we want to illustrate is that statements over fields of characteristic zero can be
deduced from statements in characteristic p. We will use the following facts from Commutative
Algebra:

Lemma 2.7. Let A be a finitely generated ring over Z; for example a finitely generated subring of a
field K . Then

(1) For any maximal ideal m of A, the quotient A/m is a finite field.
(2) For a polynomial ring S = A[x1, . . . ,xn], and element f ∈ S and ideal I ⊆ S , if f ∈ I +mS

for every maximal ideal m of A, then f ∈ I .

This is all we need to deduce the Theorem in characteristic zero!

Proof of Theorem 2.5 for K of characteristic zero. We stick with f ,g,h for simplicity. Suppose that
we have f ,g,h ∈ K[x,y]. Let A be the subring of K generated by the coefficients of f ,g,h in K ;
this is a finite set, so A is a finitely generated ring, and f ,g,h ∈ A[x,y]. Now let m be a maximal
ideal of A. Writing ∗ for images modulo m, we have f ,g,h ∈ A[x,y]/mA[x,y] � (A/m)[x,y].
Since A/m is a field of characteristic zero, we have

(f gh)2 ∈ (f 3, g3,h3) in (A/m)[x,y].

This means that
(f gh)2 ∈ (f 3, g3,h3) +mA[x,y] in A[x,y].

Since this is true for all maximal ideals m, we deduce that

(f gh)2 ∈ (f 3, g3,h3) in A[x,y].

But since A ⊆ K , we obtain

(f gh)2 ∈ (f 3, g3,h3) in K[x,y]. �
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3. F-singularities

So far we have largely focused on advantageous properties of the Frobenius map when R is a
polynomial ring, or more generally, a regular ring, in light of Kunz’ theorem. Let us focus on
the case of the polynomial ring over a perfect field or the case of an F-finite regular local ring.
In either of these cases, Fe∗R is free over R. We have applied this in the setting of tight closure
to say that there are “no new relations” in Fe∗R, which then led to triviality of tight closure.
We will now consider the following perspective on freeness of Fe∗R: this means that Fe∗R has
many surjective maps back to R, namely the coordinate maps for a free basis. We will consider
weakenings of the conclusion of Kunz’ theorem by asking for fewer surjective maps back to R.

Definition 3.1. Let R be a ring of characteristic p. We say that R is F-split if there is an
R-module homomorphism ϕ : F∗R −→ R such that ϕ(F∗1) = 1.

Example 3.2. Let K be a perfect field and S = K[x1, . . . ,xn]. Recall that F∗R is a free R-
module with basis B = {F∗(x

a1
1 · · ·x

an
n ) | 0 ≤ ai < p}. Among this basis is F∗1. There is an

S-linear map ϕ : F∗S −→ S that sends any element F∗s ∈ F∗S to the coefficient of F∗1 in
the unique expresion of F∗s as an S-linear combination of the elements of B. In particular,
ϕ(F∗1) = ϕ(1 ·F∗1+0 · other elements of B) = 1. Thus S is F-split.

Example 3.3. Let K be a perfect field and R = K[x,y]/(xy). We saw in the exercises that

F∗R � R ·F∗1⊕
⊕
0<i<p

R/(y) ·F∗(xi)⊕
⊕
0<j<p

R/(x) ·F∗(yj).

An argument similar to the previous example shows that R is F-split.

Lemma 3.4. An F-split ring is reduced.

Proof. We will show that the Frobenius map F : R −→ F∗R is injective. Let ϕ : F∗R −→ R be an
R-module homomorphism with ϕ(F∗1) = 1. Then for any r ∈ R,

ϕF(r) = ϕ(F∗r
p) = ϕ(rF∗1) = rϕ(F∗1) = r.

Thus, if F(r) = 0, then r = ϕF(r) = 0 as well. This shows that F is injective, so R is reduced. �

There are a few useful equivalences for the F-split condition.

Lemma 3.5. Let R be a ring of characteristic p. The following are equivalent:

(1) R is F-split: there is an R-module homomorphism ϕ : F∗R −→ R such that ϕ(F∗1) = 1.
(2) For all e > 0, there is an R-module homomorphism ϕ : Fe∗R −→ R such that ϕ(Fe∗1) = 1.
(3) For some e > 0, there is an R-module homomorphism ϕ : Fe∗R −→ R such that ϕ(Fe∗1) = 1.
(4) For some e > 0, there is some c , 0 and an R-module homomorphism ϕ : Fe∗R −→ R such that

ϕ(Fe∗ c) = 1.

The implications (2)⇒(1)⇒(3)⇒(4) are clear. The rest are outlined in the exercises.

Lemma 3.6. Let R be an F-split ring and I an ideal. Then IF = I .

Proof. Recall that IF = {a ∈ R | ape ∈ I [pe] for some e}. Take some a ∈ IF , so ape ∈ I [pe] for
some e. We can rewrite this as

aFe∗1 = Fe∗a
pe ∈ Fe∗ I [p

e] = IFe∗R,
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so aFe∗1 =
∑
i aiF

e
∗ ri with ai ∈ I . By the equivalences above, since R is F-split, we have a map ϕ

such that ϕ(Fe∗1) = 1. We get

a = ϕ(aFe∗1) = ϕ

∑
i

aiF
e
∗ ri

 =∑
i

aiϕ(F
e
∗ ri) ∈ I. �

There is an extremely useful criterion for checking when a ring is F-split.

Theorem 3.7 (Fedder’s criterion). Let (S,m) be an F-finite regular local ring of characteristic p,
and I an ideal of S . Then the ring S/I is F-split if and only if

I [p] : I *m[p].

The colon ideal I [p] : I is easy to compute in the special case when I = (f ) is a principal ideal;
in this case I [p] : I = (f p−1). More generally, the colon ideal I [p] : I is easy to compute in the
case that I generated by a regular sequence f1, . . . , ft . Recall that f1, . . . , ft is a regular sequence
if fi is a nonzerodivizor modulo f1, . . . , fi−1 for each i. In this case I [p] : I = (f1 · · ·ft)p−1 + I [p].

We will outline the proof of Fedder’s criterion in the exercises.

Example 3.8. Let K be a field, and consider a 3× 3 matrix

M =

x11 x12 x13
x21 x22 x23
x31 x32 x33

 .
M is nilpotent if Mn = 0 for some n. For any given n, we can write out the nine entries Mn as
polynomial expressions of the entries xij (of degree n) and we get nine equations to determine
if Mn = 0. Much better, M is nilpotent if and only if the characteristic polynomial of M is of
the form T 3 = 0, so the coefficients of the characteristic polynomial vanish. These are

f = x11 + x22 + x33 , g =
∣∣∣∣∣x11 x12
x21 x22

∣∣∣∣∣+ ∣∣∣∣∣x11 x13
x31 x33

∣∣∣∣∣+ ∣∣∣∣∣x22 x23
x32 x33

∣∣∣∣∣ , h =
∣∣∣∣∣∣∣∣
x11 x12 x13
x21 x22 x23
x31 x32 x33

∣∣∣∣∣∣∣∣ .
One can see (e.g., from the next observation) that f ,g,h form a regular sequence. Order the
variables x11 > x12 > x13 > x21 > · · · > x33 and take the reverse lexicographic order on the
polynomial ring. Then

LT ((f gh)p−1) = LT (f )p−1LT (g)p−1LT (h)p−1 = (x11x12x21x13x22x31)
p−1 <m[p],

so the quotient ring is F-split.
In particular, the ideal generated by f ,g,h is a radical ideal. While one can see this directly

from initial ideal methods in this example, the combination of such methods with Fedder’s
criterion is a useful technique for showing an ideal is radical.

There is a stronger condition that is closely related.

Definition 3.9. Let R be a ring of characteristic p. We say that R is strongly F-regular if
for any c not in any minimal prime of R, there is some e and an R-module homomorphism
ϕ : Fe∗R −→ R such that ϕ(Fe∗ c) = 1. When R is a domain, this simplifies to: for any c , 0, there
is some e and an R-module homomorphism ϕ : Fe∗R −→ R such that ϕ(Fe∗ c) = 1.

It follows from the definition that any strongly F-regular ring is F-split: one can enforce the
definition with c = 1, and use the equivalences established above. If R is strongly F-regular and
c not in any minimal prime of R, given an e that “works”, any larger e also “works.”
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Lemma 3.10. Let R be a strongly F-regular ring and I an ideal. Then I ∗ = I .

Proof. Recall that

I ∗ = {a ∈ R | there exists c not in any minimal prime : cap
e
∈ I [p

e] for e� 0}.
Take some a ∈ I ∗, so cape ∈ I [pe] for some c not in any minimal prime and e� 0. We can rewrite
this as

aFe∗ c = F
e
∗ (ca

pe) ∈ Fe∗ I [p
e] = IFe∗R.

From the definition of strongly F-regular with c and the note above, for all e� 0 there is some
ϕ : Fe∗R −→ R such that ϕ(Fe∗ c) = 1. Applying ϕ, we get

a = aϕ(Fe∗ c) = ϕ(aF
e
∗ c) = ϕ

∑
i

aiF
e
∗ ri

 =∑
i

aiϕ(F
e
∗ ri) ∈ I. �

It is a longstanding open question whether a ring with the property that every ideal is tightly
closed is necessarily strongly F-regular.

Proposition 3.11. Let (R,m, k) be an F-finite regular local ring. Then R is strongly F-regular.

Proof. The main point is the Corollary to Kunz’ theorem: Fe∗R is a free R-module for each
e in this setting. Let c , 0. We also need a couple of standard facts from Commutative
Algebra. First, the Krull Intersection Theorem says that

⋂
n>0m

n = 0 in any local ring. Thus⋂
e>0m

[pe] ⊆
⋂
e>0m

pe = 0, so there is some e such that c < m[pe]. Second, a consequence of
Nakayama’s Lemma says that forM a finitely generated free module over a local ring (R,m), any
element not in mM is part of a free basis ofM . Applying this to Fe∗R, we have mF

e
∗R = Fe∗m

[pe].
Thus, with e as above, Fe∗ c is part of a free basis for Fe∗R. Completing β1 = Fe∗ c to a full basis
{ηi} for Fe∗R, there is an R-linear map ϕ that sends

∑
i riβi to r1. In particular, ϕ(Fe∗ c) = 1. �

There is an analogue of Fedder’s criterion, called Glassbrenner’s criterion, for strong F-
regularity. However, we will focus on another important source of strongly F-regular rings.

Definition 3.12. Let R ⊆ S be an inclusion of rings. We say that R is a direct summand of S
if there is an R-module homomorphism ψ : S −→ R such that ψ(1) = 1.

Proposition 3.13. Let R ⊆ S be an inclusion of rings of characteristic p, and suppose that R is a
direct summand of S .

(1) If S is a strongly F-regular domain, then R is strongly F-regular.
(2) If S is F-split, then R is F-split.

Proof. We will prove the first statement, as the second is very similar. Let S be strongly F-
regular, and ψ : S −→ R such that ψ(1) = 1. Suppose that c , 0 in R. There is some e and
S-linear map ϕ : Fe∗S −→ S such that ϕ(Fe∗ c) = 1. Since R ⊆ S , ϕ is R-linear as well. The
restriction of the composition ψ ◦ϕ|Fe∗R : Fe∗R −→ R is an R-linear map sending Fe∗ c to 1. This
shows that R is strongly F-regular. �

Example 3.14. Let K be a perfect field. Let R = K[x2,xy,y2] ⊆ S = K[x,y]. We claim that R is
a direct summand of S . Note that R is the K-vector space spanned by monomials whose total
degree is even. Any element s ∈ S has a unique expression of the form s = seven + sodd where
seven is a linear combination of monomials of even degree, i.e., seven ∈ R, and sodd is a linear
combination of monomials of odd degree. Thus, there is a well-defined map ψ : S −→ R given
by ψ(s) = seven. This map is R-linear: if r ∈ R, then rs = rseven + rsodd , where rseven is a linear
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combination of monomials of even degree and rsodd is a linear combination of monomials of
odd degree. This means that ψ(rs) = rseven = rψ(s), which says that ψ is R-linear.

We now loosely outline an application of strong F-regularity. A magic square of size t with
row sum n is a t × t array of nonnegative integers such that each row and each column sums
to n. For example,

1 14 14 4
11 7 6 9
8 10 10 5
13 2 3 15

is a particularly gaudy magic square of size 4 and row sum 33. There is only one magic square
of size 1 and row sum n, namely

n

and there are n+1 magic squares of size 2 and row sum n, namely

i n− i
n− i i

0 ≤ i ≤ n.

Theorem 3.15 (Stanley). Denote by Mt(n) the number of t × t magic squares with row sum n. For
any t > 0, the function Mt(n) is a polynomial for n ≥ 0.

Outline. Step 1: Let K be a field of positive characteristic and S = K[x11, . . . ,x33]. We associate
to each magic square a monomial in S :a11 a12 a13

a21 a22 a23
a31 a32 a33

  xa1111 x
a12
12 · · ·x

a33
33

and we let R be the K-vector space spanned by these monomials. R is a subring of S . The
number Mt(n) is equal to the number of monomials in R of degree nt, or equivalently, the
vector space dimension of Rnt . This part is elementary.
Step 2: The ring R is generated over K by magic squares of row sum 1; i.e., R is generated

in a single degree. This boils down to the fact that any magic square is a sum of permutation
matrices, which is a nontrivial fact from combinatorics/convex geometry called the Birkhoff-Von
Neumann Theorem. If we divide all of the degrees in R through by t, then R is generated in
degree one, and Mt(n) is now just the Hilbert function of R. It follows from general facts that
Mt(n) eventually agrees with a polynomial, but we want to show that it agrees with a polynomial
for all nonnegative values of n.
Step 3: The ring R is a direct summand of S . This is not too hard to show. It then follows

that R is a strongly F-regular graded ring.
Step 4: The fact that R is strongly F-regular forces certain graded pieces of local cohomology

to vanish, which then forces R to be Cohen-Macaulay and the regularity of R to be less than the
dimension of R. These conditions then make the Hilbert function of R a polynomial. �
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Exercise set #2

(1) Explain as succinctly as possible why the ring K[x,y]/(x2) is not F-split nor strongly
F-regular.

(2) Let K be a perfect field of characteristic p and S = K[x,y](x,y). Recall that this is
an F-finite regular local ring. Apply Fedder’s criterion to the rings S/(x2) and S/(xy).
Compare this to our other examples.

(3) Let K be a perfect field of characteristic p and S = K[x,y,z](x,y,z). Apply Fedder’s
criterion to:
• S/(x2 + y2 + z2). It may be helpful to consider the cases with p = 2 and p , 2
separately.
• S/(x4 + y4 + z4).
• S/(x3 + y3 + z3). It may be helpful to consider the cases with p = 3, p ≡ 1 mod 3,
and p ≡ 2 mod 3 separately.

(4) Let K be a field of characteristic , 2 and S = K[x,y]. Verify that f gh < (f 2, g2,h2) for
f = xy, g = x2 − y2, h = x2 + y2.

(5) Complete the proof of Lemma 3.5.

Hint: For (3)⇒(1)⇒(2), think of R
Fe+e

′

−−−−→ Fe+e∗ R as the composition R
Fe−−→ Fe∗R

Fe
′
∗ F−−−−→ Fe+e

′
∗ R.

You may find it useful to show that if there is some e that “works” any smaller e “works”,
and if e “works”, then 2e “works”.

(6) Let K be a field, and R ⊆ S = K[x11, . . . ,x33] be the K-vector space spanned by monomi-
als xa1111 x

a12
12 · · ·x

a33
33 such that {aij} is a magic square. Explain why R is a ring, and show

R is a direct summand of S via the K-vector space map ψ : S −→ R given by

ψ(xa1111 x
a12
12 · · ·x

a33
33 ) =

{
xa1111 x

a12
12 · · ·x

a33
33 if {aij} is a magic square

0 otherwise.

(7) Let K be a perfect field of characteristic p and R = K[x,y,z]/(x3 + y3 + z3).
(a) If p ≡ 2 mod 3, show that (z2)p ∈ (x,y)[p]. Deduce that z2 ∈ (x,y)F and z2 ∈ (x,y)∗.

Compare this with (3) above.
(b) If p ≡ 1 mod 3, show that z2 ∈ (x,y)∗. Deduce that R is not strongly F-regular.

(8) † Lemma 2.6 follows from standard properties of integral closure, but we outline a self-
contained argument in the case of polynomials f1, . . . , fn+1 homogeneous of the same
degree in a polynomial ring S = K[x1, . . . ,xn] over an infinite field K .
(a) Let T be an indeterminate. Explain why K[f1, . . . , fn+1] � K[f1T , . . . , fn+1T ] ⊆ R[T ].
(b) Let f1, . . . , fn+1 ∈ S be homogeneous polynomials of the same degree. Explain why

the inclusion K[`1T , . . . , `nT ] ⊆ K[f1T , . . . , fn+1T ] is module-finite for generic linear
combinations `1, . . . , `n of f1, . . . , fn+1.

(c) Show that the inclusion R[`1T , . . . , `nT ] ⊆ R[f1T , . . . , fn+1T ] is module-finite for
generic `1, . . . , `n.

(d) Take an equation (fiT )k+ · · · = 0 of integral dependence for fiT over R[`1T , . . . , `nT ]
and collect the terms of the form T k . Use this to show that f k+ti ∈ (`1, . . . , `n)t .

(9) † Let R be a strongly F-regular Noetherian local or graded ring. Show that R is a domain.
Hint: If R has distinct minimal primes, start by finding nonzero f ,g such that f g = 0
and f + g is not in any minimal prime.

†Requires some background from Commutative Algebra.
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(10) In this problem, we prove Fedder’s criterion in the case of R = S/I for S = K[x1, . . . ,xn](x1,...,xn)
with K perfect. We will use the conclusion of (13) from Problem Set 1 in this setting.
(a) Explain why every R-linear map ϕ : F∗R −→ R is induced from a map ψ : F∗S −→ S

in the sense that ϕ(s) = ψ(s), thinking of F∗R = F∗S/F∗I .
(b) Let Φ be as in problem (13) from Problem Set 1 and s ∈ S . Show that (F∗s ·Φ)(S) ⊆m

if and only if s ∈m[p].
(c) Show that (F∗s ·Φ)(I) ⊆ I if and only if s ∈ (I [p] : I). Deduce Fedder’s criterion.

(11) In the context of the previous problem, show that

HomR(F∗R,R) �
F∗(I [p] : I) ·HomS(F∗S,S)
F∗I [p] ·HomS(F∗S,S)

.

(12) † Compute the degree of the polynomial Mt(n) for every t.
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