Worksheet on free resolutions and Tor

Definition:

- A free resolution of a an R-module M is an exact sequence of the form

$$
\cdots \rightarrow F_{i+1} \xrightarrow{d_{i}} F_{i} \xrightarrow{d_{i-1}} F_{i-1} \rightarrow \cdots \rightarrow F_{1} \xrightarrow{d_{0}} F_{0} \rightarrow M \rightarrow 0,
$$

where each module F_{i} is free (possibly zero).

- If (R, \mathfrak{m}) is local or graded, a free resolution as above is minimal if $\operatorname{im}\left(d_{i}\right) \subseteq F_{i}$ for all i.
(1) Show that every module M over any ring has a free resolution.
(2) Show that if R is Noetherian, then every finitely generated module has a free resolution in which each F_{i} is finitely generated.
(3) Show that if R is Noetherian and local or graded, and M is finitely generated, then M has a minimal free resolution in which each F_{i} is finitely generated; in the graded case each F_{i} is graded.
(4) Find a minimal free resolution of $K[x] /(x)$ over $K[x]$, and a free resolution that is not minimal.
(5) Find a minimal free resolution of $K[x, y] /(x, y)$ over $K[x, y]$, and a free resolution that is not minimal.
(6) Find a minimal free resolution of $K[x, y] /\left(x^{2}, x y\right)$ over $K[x, y]$.
(7) Find a minimal free resolution of $R /(x, y)$ over $R=K[x, y] /(x y)$.

Definition: If M is an R-module, the Tor functors are defined as follows: first, take a free resolution of M as above.

- For a module N, with a free resolution of M as above, we have $\operatorname{Tor}_{i}^{R}(M, N):=\frac{\operatorname{ker}\left(d_{i-1} \otimes N\right)}{\operatorname{im}\left(d_{i} \otimes N\right)}$.
- For a homomorphism $N \xrightarrow{\alpha} N^{\prime}$, we have

$$
\left(F_{i} \otimes \alpha\right)\left(\operatorname{ker}\left(d_{i-1} \otimes N\right)\right) \subseteq \operatorname{ker}\left(d_{i-1} \otimes N^{\prime}\right) \text { and }\left(F_{i} \otimes \alpha\right)\left(\operatorname{im}\left(d_{i} \otimes N\right)\right) \subseteq \operatorname{im}\left(d_{i} \otimes N^{\prime}\right)
$$

Thus, the map $F_{i} \otimes \alpha$ induces a map $\operatorname{Tor}_{i}^{R}(M, \alpha): \operatorname{Tor}_{i}^{R}(M, N) \rightarrow \operatorname{Tor}_{i}^{R}\left(M, N^{\prime}\right)$.

Properties of Tor:

- Well-defined up to isomorphism. If P_{\bullet} and P_{\bullet}^{\prime} are two different free resolutions of a module M, write $T_{i}(-)$ for $\operatorname{Tor}_{i}^{R}(M,-)$ computed via the resolution P_{\bullet}, and $T_{i}^{\prime}(-)$ for $\operatorname{Tor}_{i}^{R}(M,-)$ computed via the resolution P_{\bullet}^{\prime}. Then there are isomorphisms $\theta_{N}^{i}: T^{i}(N) \xrightarrow{\cong} T^{\prime i}(N)$ for all i, and $\theta_{N}^{i} \circ T^{i}(\alpha)=T^{\prime i}(\alpha) \circ \theta_{N}^{i}$ for all homomorphisms α. For all purposes, we can assume that functors $\operatorname{Tor}_{i}^{R}(M,-)$ are well-defined. Even better, we can use a resolution (exact sequence as above) where each F_{i} is merely flat, instead of free.
- The LONG EXACT SEQUENCE. If $0 \rightarrow N^{\prime} \xrightarrow{\alpha} N \xrightarrow{\beta} N^{\prime \prime} \rightarrow 0$ is a short exact sequence, then there is a long exact sequence

$$
\begin{aligned}
\cdots & \rightarrow \operatorname{Tor}_{2}^{R}\left(M, N^{\prime}\right) \xrightarrow{\operatorname{Tor}_{2}^{R}(M, \alpha)} \operatorname{Tor}_{2}^{R}(M, N) \xrightarrow{\operatorname{Tor}_{2}^{R}(M, \beta)} \operatorname{Tor}_{2}^{R}\left(M, N^{\prime \prime}\right) \rightarrow \operatorname{Tor}_{1}^{R}\left(M, N^{\prime}\right) \\
& \xrightarrow{\operatorname{Tor}_{1}^{R}(M, \alpha)} \operatorname{Tor}_{1}^{R}(M, N) \xrightarrow{\operatorname{Tor}_{1}^{R}(M, \beta)} \operatorname{Tor}_{1}^{R}\left(M, N^{\prime \prime}\right) \rightarrow M \otimes_{R} N^{\prime} \xrightarrow{M \otimes \alpha} M \otimes_{R} N \xrightarrow{M \otimes \beta} M \otimes_{R} N^{\prime \prime} \rightarrow 0 .
\end{aligned}
$$

- Balancing of Tor (the magic trick). There are isomorphisms for each i, M, N :

$$
\operatorname{Tor}_{i}^{R}(M, N) \cong \operatorname{Tor}_{i}^{R}(N, M)
$$

That is, Tor can be computed by a free resolution of either argument!
(8) Show that $\operatorname{Tor}_{0}^{R}(M, N) \cong M \otimes_{R} N$, and $\operatorname{Tor}_{0}^{R}(M, \alpha)$ agrees with $M \otimes \alpha$.
(9) Compute $\operatorname{Tor}_{1}^{K[x]}(K[x] /(x), N)$ for an arbitrary $K[x]$-module N.
(10) Compute $\operatorname{Tor}_{i}^{R}(R /(x, y), R /(x))$ for $R=K[x, y] /(x y)$.
(11) Show that if R is Noetherian and M and N are finitely generated modules, then all of the modules $\operatorname{Tor}_{i}^{R}(M, N)$ are finitely generated.
(12) Let (R, \mathfrak{m}, k) be graded or local Noetherian, and M be finitely generated. Let F_{\bullet} be a minimal free resolution of M. Show that the rank of F_{i} is the k-vector space dimension of $\operatorname{Tor}_{i}^{R}(M, k)$.
(13) Let $R=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring with the standard grading. Use the short exact sequences

$$
0 \rightarrow R /\left(x_{1}, \ldots, x_{i}\right) \xrightarrow{x_{i+1}} R /\left(x_{1}, \ldots, x_{i}\right) \rightarrow R /\left(x_{1}, \ldots, x_{i+1}\right) \rightarrow 0
$$

to compute $\operatorname{Tor}_{j}^{R}(k, k)$. Conclude that k has a free resolution that ends at step at most j.
(14) Show that every finitely generated graded module over $R=k\left[x_{1}, \ldots, x_{n}\right]$ has a free resolution that ends at step at most j.

After we learn about regular rings...
(15) Modify the last two problems to show that if (R, \mathfrak{m}) is a regular local ring, then every finitely generated R-module has a free resolution that ends at step at most j.
(16) Show that if M is a finitely generated module over (R, \mathfrak{m}), and x is a nonzerodivisor on M, then $\operatorname{pd}_{R}(M)=\operatorname{pd}_{R / x R}(M / x M)$.

Auslander-Buchsbaum-Serre Theorem: Let (R, \mathfrak{m}, k) be a local ring. The following are equivalent:

- R is regular.
- Every finitely generated R-module has a finite free resolution.
- k has a finite free resolution.
(17) Show the important corollary: if (R, \mathfrak{m}) is regular, and $\mathfrak{p} \in \operatorname{Spec}(R)$, then $R_{\mathfrak{p}}$ is regular.

