DEFINITION:

• A free resolution of a an R-module M is an exact sequence of the form

 $\cdots \to F_{i+1} \xrightarrow{d_i} F_i \xrightarrow{d_{i-1}} F_{i-1} \to \cdots \to F_1 \xrightarrow{d_0} F_0 \to M \to 0,$

where each module F_i is free (possibly zero).

- If (R, \mathfrak{m}) is local or graded, a free resolution as above is **minimal** if $\operatorname{im}(d_i) \subseteq F_i$ for all *i*.
- (1) Show that every module M over any ring has a free resolution.
- (2) Show that if R is Noetherian, then every finitely generated module has a free resolution in which each F_i is finitely generated.
- (3) Show that if R is Noetherian and local or graded, and M is finitely generated, then M has a minimal free resolution in which each F_i is finitely generated; in the graded case each F_i is graded.
- (4) Find a minimal free resolution of K[x]/(x) over K[x], and a free resolution that is not minimal.
- (5) Find a minimal free resolution of K[x,y]/(x,y) over K[x,y], and a free resolution that is not minimal.
- (6) Find a minimal free resolution of $K[x, y]/(x^2, xy)$ over K[x, y].
- (7) Find a minimal free resolution of R/(x,y) over R = K[x,y]/(xy).

DEFINITION: If M is an R-module, the **Tor functors** are defined as follows: first, take a free resolution of M as above.

- For a module N, with a free resolution of M as above, we have $\operatorname{Tor}_i^R(M,N) := \frac{\ker(d_{i-1} \otimes N)}{\operatorname{im}(d_i \otimes N)}$.
- For a homomorphism $N \xrightarrow{\alpha} N'$, we have

 $(F_i \otimes \alpha)(\ker(d_{i-1} \otimes N)) \subseteq \ker(d_{i-1} \otimes N') \text{ and } (F_i \otimes \alpha)(\operatorname{im}(d_i \otimes N)) \subseteq \operatorname{im}(d_i \otimes N').$

Thus, the map $F_i \otimes \alpha$ induces a map $\operatorname{Tor}_i^R(M, \alpha) : \operatorname{Tor}_i^R(M, N) \to \operatorname{Tor}_i^R(M, N')$. PROPERTIES OF TOR:

- WELL-DEFINED UP TO ISOMORPHISM. If P_{\bullet} and P'_{\bullet} are two different free resolutions of a module M, write $T_i(-)$ for $\operatorname{Tor}_i^R(M,-)$ computed via the resolution P_{\bullet} , and $T'_i(-)$ for $\operatorname{Tor}_i^R(M,-)$ computed via the resolution P'_{\bullet} . Then there are isomorphisms $\theta_N^i : T^i(N) \xrightarrow{\cong} T'^i(N)$ for all i, and $\theta_N^i \circ T^i(\alpha) = T'^i(\alpha) \circ \theta_N^i$ for all homomorphisms α . For all purposes, we can assume that functors $\operatorname{Tor}_i^R(M,-)$ are well-defined. Even better, we can use a resolution (exact sequence as above) where each F_i is merely *flat*, instead of free.
- THE LONG EXACT SEQUENCE. If $0 \to N' \xrightarrow{\alpha} N \xrightarrow{\beta} N'' \to 0$ is a short exact sequence, then there is a long exact sequence

$$\cdots \to \operatorname{Tor}_{2}^{R}(M, N') \xrightarrow{\operatorname{Tor}_{2}^{R}(M, \alpha)} \operatorname{Tor}_{2}^{R}(M, N) \xrightarrow{\operatorname{Tor}_{2}^{R}(M, \beta)} \operatorname{Tor}_{2}^{R}(M, N'') \to \operatorname{Tor}_{1}^{R}(M, N')$$
$$\xrightarrow{\operatorname{Tor}_{1}^{R}(M, \alpha)} \operatorname{Tor}_{1}^{R}(M, N) \xrightarrow{\operatorname{Tor}_{1}^{R}(M, \beta)} \operatorname{Tor}_{1}^{R}(M, N'') \to M \otimes_{R} N' \xrightarrow{M \otimes \alpha} M \otimes_{R} N \xrightarrow{M \otimes \beta} M \otimes_{R} N'' \to 0.$$

• BALANCING OF TOR (THE MAGIC TRICK). There are isomorphisms for each i, M, N:

 $\operatorname{Tor}_{i}^{R}(M, N) \cong \operatorname{Tor}_{i}^{R}(N, M).$

That is, Tor can be computed by a free resolution of either argument!

- (8) Show that $\operatorname{Tor}_0^R(M, N) \cong M \otimes_R N$, and $\operatorname{Tor}_0^R(M, \alpha)$ agrees with $M \otimes \alpha$. (9) Compute $\operatorname{Tor}_{1_p}^{K[x]}(K[x]/(x), N)$ for an arbitrary K[x]-module N.
- (10) Compute $\operatorname{Tor}_{i}^{R}(R/(x,y), R/(x))$ for R = K[x,y]/(xy).
- (11) Show that if R is Noetherian and M and N are finitely generated modules, then all of the modules $\operatorname{Tor}_{i}^{R}(M, N)$ are finitely generated.
- (12) Let (R, \mathfrak{m}, k) be graded or local Noetherian, and M be finitely generated. Let F_{\bullet} be a minimal free resolution of M. Show that the rank of F_i is the k-vector space dimension of $\operatorname{Tor}_i^R(M,k)$.
- (13) Let $R = k[x_1, \ldots, x_n]$ be a polynomial ring with the standard grading. Use the short exact sequences

$$0 \to R/(x_1, \dots, x_i) \xrightarrow{\cdot x_{i+1}} R/(x_1, \dots, x_i) \to R/(x_1, \dots, x_{i+1}) \to 0$$

to compute $\operatorname{Tor}_{i}^{R}(k,k)$. Conclude that k has a free resolution that ends at step at most j.

(14) Show that every finitely generated graded module over $R = k[x_1, \ldots, x_n]$ has a free resolution that ends at step at most j.

AFTER WE LEARN ABOUT REGULAR RINGS...

- (15) Modify the last two problems to show that if (R, \mathfrak{m}) is a regular local ring, then every finitely generated R-module has a free resolution that ends at step at most i.
- (16) Show that if M is a finitely generated module over (R, \mathfrak{m}) , and x is a nonzerodivisor on M, then $\operatorname{pd}_R(M) = \operatorname{pd}_{R/xR}(M/xM).$

AUSLANDER-BUCHSBAUM-SERRE THEOREM: Let (R, \mathfrak{m}, k) be a local ring. The following are equivalent:

- *R* is regular.
- Every finitely generated *R*-module has a finite free resolution.
- k has a finite free resolution.
- (17) Show the important corollary: if (R, \mathfrak{m}) is regular, and $\mathfrak{p} \in \operatorname{Spec}(R)$, then $R_{\mathfrak{p}}$ is regular.