Matlis duality and $E_R(k)$ for rings with coefficient fields

Throughout, (R, \mathfrak{m}) will denote a local or graded noetherian ring with coefficient field k, so that the composition $k \hookrightarrow R \to R/\mathfrak{m}$ is an isomorphism.

DEFINITION: For an *R*-module *M*, the \mathfrak{m} -adically continuous *k*-linear homomorphisms from *M* to *k* are

$$\operatorname{Hom}_{k}^{\mathfrak{m}-\operatorname{cts}}(M,k) := \varinjlim \operatorname{Hom}_{k}(M/\mathfrak{m}^{n}M,k).$$

Before we get started, we recall some facts about Hom and limits:

• Given a directed system $(M_i)_{i \in \mathbb{N}} = \left(\cdots \longrightarrow M_i \longrightarrow M_{i+1} \longrightarrow \cdots \right),$

 $\operatorname{Hom}_{R}\left(\varinjlim M_{i}, N\right) \cong \varprojlim \operatorname{Hom}_{R}\left(M_{i}, N\right).$

• If M is finitely presented and given a directed system $(N_i)_{i \in \mathbb{N}}$, then

$$\operatorname{Hom}_{R}(M, \varinjlim N_{i}) \cong \varinjlim \operatorname{Hom}_{R}(M, N_{i}).$$

- In general, if $(M_i)_{i \in \mathbb{N}} = \left(\cdots \longrightarrow M_i \longrightarrow M_{i-1} \longrightarrow \cdots \right)$ is an inverse system, Hom_R ($\varprojlim M_i, N$) $\cong \liminf_R \operatorname{Hom}_R(M_i, N)$
- 0) Check that if M is an R-module, then $\left(\operatorname{Hom}_k(M/\mathfrak{m}^n M, k)\right)_{n \in \mathbb{N}}$ forms a directed system of R-modules, so $\operatorname{Hom}_k^{\mathfrak{m}-\operatorname{cts}}(M, k)$ is an R-module.¹
- 1) a) Show that $k \cong \operatorname{Hom}_{R}(R,k) \subseteq \operatorname{Hom}_{k}^{\mathfrak{m}-\operatorname{cts}}(R,k)$ is an essential extension.
 - b) Show that if M is a finitely generated R-module, then $\operatorname{Hom}_{k}^{\mathfrak{m}-\operatorname{cts}}(M,k) \cong \operatorname{Hom}_{R}\left(M,\operatorname{Hom}_{k}^{\mathfrak{m}-\operatorname{cts}}(R,k)\right).$

c) Show that $\operatorname{Hom}_{k}^{\mathfrak{m}-\operatorname{cts}}(R,k)$ is injective, and conclude that this is an injective hull of k^{2} .

2) a) Let
$$S = k [x_1, \ldots, x_d]$$
, $\mathfrak{m} = (x_1, \ldots, x_d)$, $T = S_{\mathfrak{m}}$. Show that $E_T(k)$ has a basis given by

$$(\underline{x}^{\underline{\alpha}})^* = \begin{cases} \underline{x}^{\underline{\beta}} \mapsto 1 & \underline{\beta} = \underline{\alpha} \\ \underline{x}^{\underline{\beta}} \mapsto 0 & \underline{\beta} \neq \underline{\alpha} \end{cases}$$

with module structure given by

$$\underline{x}^{\underline{\gamma}} \cdot (\underline{x}^{\underline{\alpha}})^* = \begin{cases} (\underline{x}^{\underline{\alpha}-\underline{\gamma}})^* & \alpha_i \ge \gamma_i \text{ for all } i\\ 0 & \alpha_i < \gamma_i \text{ for some } i. \end{cases}$$

b) Compare $E_T(k)$ to the module described in the first lecture.

²Hint: Show that for any ideal I and any n, there exists N such that $I/\mathfrak{m}^N \cap I \xrightarrow{\longrightarrow} I/\mathfrak{m}^n I$.

¹Yes, this is very quick.

- c) Consider $\widehat{T} = k[\![x_1, \ldots, x_n]\!]$, the completion of T above. Show that $E_{\widehat{T}}(k) \cong E_T(k)$.
- d) If $R = \bigoplus_{i \in \mathbb{N}} R_i$ is graded, $R_0 = k$, and R is a finitely generated k-algebra, show that the graded dual

$$R^* = \bigoplus_i R_i^*, \qquad R_i^* = \operatorname{Hom}_k(R_i, k)$$

is an injective hull for k.

DEFINITION: The Matlis duality functor is $(-)^{\vee} = \operatorname{Hom}_R(-, E_R(k))$. Note that this is an exact functor.

- (3) a) If M is a finitely generated R-module, show that $M^{\vee} \cong \operatorname{Hom}_{k}^{\mathfrak{m}-\operatorname{cts}}(M,k)$.
 - b) If M is a module of finite length, show that $M^{\vee} \cong \operatorname{Hom}_k(M, k)$.
 - c) If $M_1 \subseteq M_2 \subseteq M_3 \subseteq \cdots \subseteq M$, each M_i is a finite length module, and $M = \bigcup M_i$, we say that M is a union of finite length submodules. Show that if M is a union of finite length submodules, then $M^{\vee} \cong \operatorname{Hom}_k(M, k)$.
 - d) Show that if M is finitely generated, then M^{\vee} is a union of finite length submodules.
 - e) If M is a finitely generated R-module, show that $M^{\vee\vee} \cong \widehat{M}$. In particular, $R^{\vee\vee} \cong \widehat{R}$.
- (4) a) Come up with explicit examples of Matlis duals of nonregular rings and nonfree modules.
 - b) Say R is complete. Our recipe for $E_R(k)$ looks canonical. Explain why it is not.
 - c) Show that the Matlis duality functor is faithful: if $M \neq 0$, then $M^{\vee} \neq 0$.
 - d) Suppose R is a local ring containing a field, but that R does not have a coefficient field. Explain how to give an explicit description of R^{\vee} anyway.
 - e) Can you give a uniform description for the duality functor for all *R*-modules in our setting?