Worksheet on Gorenstein rings

- (1) Let (R, \mathfrak{m}, k) be a local ring. Show¹ the following:
 - (a) R is Gorenstein if and only if \hat{R} is Gorenstein.
 - (b) If x_1, \ldots, x_i is a regular sequence, then R is Gorenstein if and only if $R/(x_1, \ldots, x_i)$ is Gorenstein.
 - (c) If R is Gorenstein, and $\mathfrak{p} \in \operatorname{Spec}(R)$, then $R_{\mathfrak{p}}$ is Gorenstein.

DEFINITION: A local ring (R, \mathfrak{m}, k) is a *complete intersection* if there is a surjection from a complete regular local ring S onto \widehat{R} with the kernel generated by a regular sequence.

FACT: The following are equivalent:

- *R* is a complete intersection;
- For every² surjection from a complete RLR $S \rightarrow \widehat{R}$, the kernel is generated by a regular sequence;

and \mathbf{IF} there exists a surjection from an RLR onto R itself,

- For every surjection from an RLR $S \rightarrow R$, the kernel is generated by a regular sequence.
- (2) Show that if R is a complete intersection, then R is Gorenstein.
- (3) Let K be a field. For each of the following rings R determine: Is R Gorenstein? Is R Cohen-Macaulay? Is R a complete intersection? Reuse your work from old worksheets and HW when convenient.

¹or note that we have already shown

²This quantifier is never vacuous by Cohen's Structure Theorem.

- (4) Let (R, \mathfrak{m}) and (S, \mathfrak{n}) be two complete Gorenstein local rings, with R = S/I.
 - (a) Use Local Duality to show that $\operatorname{Ext}_{S}^{t}(R,S) = \begin{cases} 0 & t < \dim(S) \dim(R) \\ R & t = \dim(S) \dim(R). \end{cases}$
 - (b) Suppose moreover that S is regular. Let $P_{\bullet} \to R$ be the minimal free resolution of R as an S-module. Show that, $P_{\bullet} \cong \operatorname{Hom}_{S}(P_{\bullet}, S)$.³⁴
 - (c) With the same assumptions as in the previous part, show that $\operatorname{Tor}_i^S(R, M) \cong \operatorname{Ext}_S^i(R, M)$ for all S-modules M.
- (5) A numerical semigroup is a subsemigroup S of \mathbb{N} ; our convention is that $0 \in S$. A numerical semigroup ring is a ring of the form $K[S] := K[\{x^s \mid s \in S\}] \subseteq K[x]$. Assume that the GCD of the elements in S is 1. Then, there is a largest number $f_S \in \mathbb{N}$ such that $f_S \notin S$, called the Frobenius number of S.
 - (a) Show that $\mathrm{H}^{1}_{\mathfrak{m}}(K[S])$ is generated as a K vector space by $\{x^{a} \mid a \leq f_{S} \text{ and } a \notin S\}$.⁵
 - (b) Show that K[S] is Gorenstein⁶ if and only if $\{c \mid 0 \le c \le f_S, c \notin S\} = \{f_S - d \mid 0 \le d \le f_S, d \in S\}.$
 - (c) Check this criterion with $K[x^3, x^7]$, $K[x^3, x^5, x^7]$, and $K[x^4, x^5, x^6]$.
- (6) Show that if R is a Gorenstein local ring, and M is a finitely generated R-module, then M has finite projective dimension if and only if M has finite injective dimension.

³To match up the indexing, $P_{\bullet} \cong [\operatorname{Hom}_{S}(P_{\bullet}, S)]^{d-\bullet}$

⁴You can use without proof the fact that any two minimal resolutions are isomorphic.

⁵Hint: Consider the ideal $J = x^{f_S+1}K[x]$ in K[S].

⁶after localizing and/or completing at the ideal of positive degree elements