Computing local cohomology using the Čech complex

1) If $I=\left(f_{1}, \ldots, f_{n}\right)$ is an n-generated ideal, then

$$
\mathrm{H}_{I}^{n}(M)=\check{H}^{n}\left(f_{1}, \ldots, f_{n} ; M\right)=\text { cohomology of }\left(\bigoplus_{i=1}^{n} M_{f_{1} \cdots \hat{f}_{i} \cdots f_{n}} \rightarrow M_{f_{1} \cdots f_{n}} \rightarrow 0\right),
$$

so elements in the n-th local cohomology can be realized as equivalence classes of fractions.
Show that

$$
\left[\frac{m}{f_{1}^{t} \cdots f_{n}^{t}}\right] \neq 0 \text { in } H_{I}^{n}(M) \text { if and only if } f_{1}^{k} \cdots f_{n}^{k} m \notin\left(f_{1}^{t+k}, \ldots, f_{t}^{t+k}\right) M \text { for all } k \geq 0 .
$$

2) Let k be a field, $R=k\left[x_{1}, \ldots, x_{n}\right]$, and $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$.
a) Show that $\left[\frac{\underline{x}^{\underline{\alpha}}}{x_{1}^{t} \cdots x_{n}^{t}}\right]$ is nonzero in $\mathrm{H}_{\mathrm{m}}^{n}(R)$ if and only if $\underline{x}^{\underline{\underline{\alpha}}} \notin\left(x_{1}^{t}, \ldots, x_{n}^{t}\right)$.
b) Compute $\mathrm{H}_{\mathrm{m}}^{n}(R)$: give a k-basis and describe the R-module structure.
c) Use Čech cohomology to show that $\mathrm{H}_{(x, y)}^{1}(k[x, y])=0$. Beware that a potential element is represented by a pair of elements in R_{x} and R_{y}, and that problem \#1 does not apply.
3) Let R and \mathfrak{m} be as above, and $S=k[\underline{x}]^{(d)}$ be the subalgebra generated by the polynomials whose degrees are multiples of d. Let \mathfrak{n} be its homogeneous maximal ideal (the ideal generated by all d-forms in S).
a) Show that $\mathrm{H}_{\left(x_{1}, \ldots, x_{n}\right)}^{i}(R)=\mathrm{H}_{\left(x_{1}^{d}, \ldots, x_{n}^{d}\right)}^{i}(R)$ for all i.
b) Show that $\left(R_{x_{1}^{d} \cdots x_{i}^{d}}{ }^{(d)}=S_{x_{1}^{d \cdots w i d e}}\right.$ for all $i .{ }^{1}$
c) Show that $\check{C} \bullet\left(x_{1}^{d}, \ldots, x_{n}^{d} ; S\right)=\check{C} \bullet\left(x_{1}^{d}, \ldots, x_{n}^{d} ; R\right)^{(d)}$; i.e., this is the complex consisting of sums of elements whose degree is a multiple of d in $\tilde{C}^{\bullet}\left(x_{1}^{d}, \ldots, x_{n}^{d} ; R\right)$.
d) Conclude that $\mathrm{H}_{\mathbf{n}}^{n}(S)=\mathrm{H}_{\mathbf{m}}^{n}(R)^{(d)}$. Find two linearly independent elements of highest degree in $\mathrm{H}_{\left(x^{3}, x^{2} y, x y^{2}, y^{3}\right)}^{2}\left(k\left[x^{3}, x^{2} y, x y^{2}, y^{3}\right]\right)$.

[^0]4) Let $T=\frac{k[x, y, u, v]}{(x u-y v)}$. Note that T admits an \mathbb{N}^{2}-grading via
\[

\operatorname{deg}(x)=\left[$$
\begin{array}{l}
1 \\
0
\end{array}
$$\right], \operatorname{deg}(y)=\left[$$
\begin{array}{l}
0 \\
1
\end{array}
$$\right], \operatorname{deg}(u)=\left[$$
\begin{array}{l}
0 \\
1
\end{array}
$$\right], \operatorname{deg}(v)=\left[$$
\begin{array}{l}
1 \\
0
\end{array}
$$\right] ;
\]

since the defining equation is homogeneous with respect to this grading, we get a welldefined grading on T.
(a) Show that $\left(\frac{v}{x}, \frac{u}{y}\right)$ is a cocycle in the Čech complex $\check{C}^{1}(x, y ; T)$.
(b) Show that the class $\left[\frac{v}{x}, \frac{u}{y}\right]$ of the cocycle in the previous part gives a nonzero class in $\mathrm{H}_{(x, y)}^{1}(T)$.
(c) Let $\eta_{a}=\left[\frac{v^{a-1} y^{a-1}}{x^{a} y^{a}}\right] \in \check{H}^{2}(x, y ; T)$. Use the grading defined above to show that $\eta_{a} \neq 0$ in $\mathrm{H}_{(x, y)}^{2}(T)$.
(d) Show that each of the elements η_{a} is killed by the ideal $\mathfrak{m}=(x, y, u, v)$. Conclude that the socle of this local cohomology module (the submodule annihilated by the maximal ideal \mathfrak{m}) is infinite-dimensional.
(e) Congratulate yourself; you have disproven a conjecture of Grothendieck!
5) Let $R=k\left[\begin{array}{lll}u & v & w \\ x & y & z\end{array}\right]$ and $\mathfrak{p}=(u y-v x, u z-w x, v z-w y)$. Is $\mathrm{H}_{\mathfrak{p}}^{3}(R)$ nonzero?

[^0]: ${ }^{1}$ Given a graded module, we write $M^{(d)}$ for its d-th veronese submodule $\oplus_{k \in \mathbb{N}} M_{d k}$.

