Computing local cohomology using the Cech complex

1) If $I = (f_1, \ldots, f_n)$ is an *n*-generated ideal, then

$$\mathbf{H}_{I}^{n}(M) = \check{H}^{n}(f_{1}, \dots, f_{n}; M) = \text{ cohomology of } \left(\bigoplus_{i=1}^{n} M_{f_{1} \cdots \widehat{f_{i}} \cdots f_{n}} \to M_{f_{1} \cdots f_{n}} \to 0\right),$$

so elements in the n-th local cohomology can be realized as equivalence classes of fractions. Show that

$$\left[\frac{m}{f_1^t \cdots f_n^t}\right] \neq 0 \text{ in } H_I^n(M) \text{ if and only if } f_1^k \cdots f_n^k m \notin \left(f_1^{t+k}, \dots, f_t^{t+k}\right) M \text{ for all } k \ge 0.$$

2) Let k be a field, $R = k[x_1, \ldots, x_n]$, and $\mathfrak{m} = (x_1, \ldots, x_n)$.

a) Show that
$$\left[\frac{\underline{x}^{\underline{\alpha}}}{x_1^t \cdots x_n^t}\right]$$
 is nonzero in $\mathrm{H}^n_{\mathfrak{m}}(R)$ if and only if $\underline{x}^{\underline{\alpha}} \notin (x_1^t, \dots, x_n^t)$

- b) Compute $H^n_{\mathfrak{m}}(R)$: give a k-basis and describe the R-module structure.
- c) Use Čech cohomology to show that $H^1_{(x,y)}(k[x,y]) = 0$. Beware that a potential element is represented by a pair of elements in R_x and R_y , and that problem #1 does not apply.
- 3) Let R and \mathfrak{m} be as above, and $S = k[\underline{x}]^{(d)}$ be the subalgebra generated by the polynomials whose degrees are multiples of d. Let \mathfrak{n} be its homogeneous maximal ideal (the ideal generated by all d-forms in S).
 - a) Show that $H^{i}_{(x_{1},...,x_{n})}(R) = H^{i}_{(x_{1}^{d},...,x_{n}^{d})}(R)$ for all *i*.
 - b) Show that $(R_{x_1^d \cdots x_i^d})^{(d)} = S_{x_1^d \cdots x_i^d}$ for all i.¹
 - c) Show that $\check{C}^{\bullet}(x_1^d, \ldots, x_n^d; S) = \check{C}^{\bullet}(x_1^d, \ldots, x_n^d; R)^{(d)}$; i.e., this is the complex consisting of sums of elements whose degree is a multiple of d in $\check{C}^{\bullet}(x_1^d, \ldots, x_n^d; R)$.
 - d) Conclude that $H^n_n(S) = H^n_m(R)^{(d)}$. Find two linearly independent elements of highest degree in $H^2_{(x^3,x^2y,xy^2,y^3)}(k[x^3,x^2y,xy^2,y^3])$.

¹Given a graded module, we write $M^{(d)}$ for its *d*-th veronese submodule $\bigoplus_{k \in \mathbb{N}} M_{dk}$.

4) Let
$$T = \frac{k[x, y, u, v]}{(xu - yv)}$$
. Note that T admits an \mathbb{N}^2 -grading via

$$\deg(x) = \begin{bmatrix} 1\\0 \end{bmatrix}, \deg(y) = \begin{bmatrix} 0\\1 \end{bmatrix}, \deg(u) = \begin{bmatrix} 0\\1 \end{bmatrix}, \deg(v) = \begin{bmatrix} 1\\0 \end{bmatrix};$$

since the defining equation is homogeneous with respect to this grading, we get a well-defined grading on T.

(a) Show that
$$\left(\frac{v}{x}, \frac{u}{y}\right)$$
 is a cocycle in the Čech complex $\check{C}^1(x, y; T)$.

- (b) Show that the class $\left[\frac{v}{x}, \frac{u}{y}\right]$ of the cocycle in the previous part gives a nonzero class in $\mathrm{H}^{1}_{(x,y)}(T)$.
- (c) Let $\eta_a = \left[\frac{v^{a-1}y^{a-1}}{x^a y^a}\right] \in \check{H}^2(x,y;T)$. Use the grading defined above to show that $\eta_a \neq 0$ in $\mathrm{H}^2_{(x,y)}(T)$.
- (d) Show that each of the elements η_a is killed by the ideal $\mathfrak{m} = (x, y, u, v)$. Conclude that the socle of this local cohomology module (the submodule annihilated by the maximal ideal \mathfrak{m}) is infinite-dimensional.
- (e) Congratulate yourself; you have disproven a conjecture of Grothendieck!

5) Let
$$R = k \begin{bmatrix} u & v & w \\ x & y & z \end{bmatrix}$$
 and $\mathfrak{p} = (uy - vx, uz - wx, vz - wy)$. Is $\mathrm{H}^{3}_{\mathfrak{p}}(R)$ nonzero?