Worksheet on Cohen-Macaulay rings

Definition: A Noetherian local ring is Cohen-Macaulay if $\operatorname{depth}(R)=\operatorname{dim}(R)$. A finitely generated module over a Noetherian local ring is a Cohen-Macaulay module if depth $(M)=$ $\operatorname{dim}(M)$. It is a maximal Cohen-Macaulay module if $\operatorname{depth}(M)=\operatorname{dim}(M)=\operatorname{dim}(R)$.
(1) Cohen-Macaulay rings are unmixed: Show that if M is a Cohen-Macaulay R module, then $\operatorname{depth}(M)=\operatorname{dim}(R / \mathfrak{p})$ for every $\mathfrak{p} \in \operatorname{Ass}(M)$. In particular, if R is a Cohen-Macaulay ring, then R has no embedded primes, and $\operatorname{dim}(R / \mathfrak{p})$ is the same for each $\mathfrak{p} \in \operatorname{Min}(R)$.
(2) Show that if (R, \mathfrak{m}) is Cohen-Macaulay, and x_{1}, \ldots, x_{a} is a regular sequence in R, then $R /\left(x_{1}, \ldots, x_{a}\right)$ is Cohen-Macaulay.
(3) Regular sequences and systems of parameters: Let f_{1}, \ldots, f_{t} be a sequence of elements in a ring (R, \mathfrak{m}). Show that, for the conditions
(i) f_{1}, \ldots, f_{t} is a regular sequence;
(ii) $\operatorname{ht}\left(\left(f_{1}, \ldots, f_{i}\right)\right)=i$ for all i;
(iii) $\operatorname{ht}\left(\left(f_{1}, \ldots, f_{t}\right)\right)=t$;
(iv) f_{1}, \ldots, f_{t} is part of a system of parameters for R, we have $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(4)$ in general, and if R is Cohen-Macaulay, $(4) \Rightarrow(1)^{1}$, so all of the above are equivalent.
(4) Cohen-Macaulayness by systems of parameters: Let (R, \mathfrak{m}) be a Noetherian local ring. Show that the following are equivalent:

- R is Cohen-Macaulay;
- Some system of parameters of R is a regular sequence;
- Every system of parameters of R is a regular sequence.
(5) Examples:
(a) Show that a regular local ring is Cohen-Macaulay. In particular, $K[\underline{x}]_{\underline{x}}$ is CohenMacaulay.
(b) Show that $\frac{K[x, y, z]_{(x, y, z)}}{\left(x^{2}+y^{3}+z^{7}\right)}$ is Cohen-Macaulay. Even better, show that if R is a regular local ring, then $R /(f)$ is Cohen-Macaulay.
(c) Show that every zero-dimensional local ring is Cohen-Macaulay.
(d) Show that every one-dimensional local domain is Cohen-Macaulay.
(e) Use a result above to show that $\frac{K[x, y]_{(x, y)}}{\left(x^{2}, x y\right)}$ is not Cohen-Macaulay.
(f) Use a result above to show that $\frac{K[x, y]_{(x, y, z)}}{(x y, x z)}$ is not Cohen-Macaulay.

[^0](6) More examples: Use \#4 to determine which of the following are Cohen-Macaulay:
(a) $\frac{K[x, y]_{(x, y)}}{(x y)}$.
(b) $K\left[x^{4}, x^{3} y, x y^{3}, y^{4}\right]_{\left(x^{4}, x^{3} y, x y^{3}, y^{4}\right)} .{ }^{2}$
(c) $\frac{K\left[X_{2 \times 3}\right]_{X}}{I_{2}(X)}$.

(d) $K\left[\begin{array}{lll}u x & u y & u z \\ v x & v y & v z\end{array}\right] \subseteq \frac{\mathbb{Q}[u, v, x, y, z]}{\left(x^{3}+y^{3}+z^{3}\right)}$.
(7) (a) Let R be a Cohen-Macaulay local ring of dimension d, and \mathfrak{p} be prime of height h. Show that there exists a regular sequence $f_{1}, \ldots, f_{h} \in \mathfrak{p}$.
(b) Let R be a Cohen-Macaulay local ring, and \mathfrak{p} be prime. Show that $R_{\mathfrak{p}}$ is CohenMacaulay.

DEFINITION: A Noetherian local ring that may or may not be local is Cohen-Macaulay if $R_{\mathfrak{m}}$ is Cohen-Macaulay for all $\mathfrak{m} \in \operatorname{Max}(R)$. Equivalently, R is Cohen-Macaulay if $R_{\mathfrak{p}}$ is CohenMacaulay for all $\mathfrak{p} \in \operatorname{Spec}(R)$.
(8) Show that any regular ring is Cohen-Macaulay. In particular, $\mathbb{Z}, K[\underline{x}], \mathbb{Z}[\underline{x}]$ are CohenMacaulay.
(9) Unmixedness theorem: Let R be Cohen-Macaulay. Show that if $I=\left(f_{1}, \ldots, f_{r}\right)$ has height r, then every associated prime of I has height $r .^{3}$ In particular, this holds true in a polynomial ring.
(10) Dimension formula: Let R be a Cohen-Macaulay ring, and $\mathfrak{p} \subseteq \mathfrak{q}$ be primes. Then, $\operatorname{height}(\mathfrak{q})-\operatorname{height}(\mathfrak{p})=\operatorname{dim}\left(R_{\mathfrak{q}} / \mathfrak{p} R_{\mathfrak{q}}\right)$. In particular, if (R, \mathfrak{m}) is Cohen-Macaulay and local, then $\operatorname{dim}(R)-\operatorname{height}(\mathfrak{p})=\operatorname{dim}(R / \mathfrak{p})$.
(11) Miracle flatness: Let $(R, \mathfrak{m}) \subseteq(S, \mathfrak{n})$ be a module-finite local inclusion of Noetherian local rings, with R regular. Then S is Cohen-Macaulay if and only if S is a free R-module.
(a) Why does it suffice to show that, for a fixed regular system of parameters of R, x_{1}, \ldots, x_{d}, that x_{1}, \ldots, x_{d} is a regular sequence on $S \Longleftrightarrow S$ is a free R-module?
(b) Show the " \Leftarrow " implication.
(c) For the other direction, we induce on $d=\operatorname{dim}(R)=\operatorname{dim}(S)$. Do the case $d=0$.
(d) Fix a minimal generating set for S as an R-module, s_{1}, \ldots, s_{t}. Show that if there is some nontrivial relation $r_{1} s_{1}+\cdots+r_{t} s_{t}=0$, then there is a nontrivial relation where not all of the r_{i} 's lie in $\left(x_{d}\right)$.
(e) Consider what happens to a nontrivial relation nontrivial relation $r_{1} s_{1}+\cdots+r_{t} s_{t}=0$ when we pass to $R /\left(x_{d}\right)$, and obtain a contradiction.

[^1]
[^0]: ${ }^{1}$ Hint: Use $\# 1$ to show that f_{1} is a nonzerodivisor, and use $\# 2$ for induction purposes.

[^1]: ${ }^{2}$ Hint: $x^{4} \cdot\left(x y^{3}\right)^{2}=y^{4} \cdot\left(x^{3} y\right)^{2} \in\left(y^{4}\right)$.
 ${ }^{3}$ Hint: If not, take an embedded prime \mathfrak{q}, and contradict the fact that $(R / I)_{\mathfrak{q}}$ is CM.

