DEFINITION: A sequence of elements x_1, \ldots, x_t in a ring R is a **regular sequence** on a module M if

- x_1 is a nonzerodivisor on M,
- x_2 is a nonzerodivisor on M/x_1M ,
 - : :
- x_t is a nonzerodivisor on $M/(x_1, \ldots, x_{t-1})M$, and
- $M \neq (x_1, \ldots, x_t)M$.

A regular sequence x_1, \ldots, x_t is **maximal** if there is no regular sequence of the form $x_1, \ldots, x_t, x_{t+1}$. When we don't specify a module M, we mean a regular sequence on R.

- (1) Some first regular sequences.
 - (a) We say that a sequence x_1, \ldots, x_t in a ring R is a **prime sequence** if each of the ideals (0), $(x_1), (x_1, x_2), \ldots, (x_1, \ldots, x_t)$ is prime and distinct. Show that a prime sequence is a regular sequence.
 - (b) Show that the sequence of variables in a polynomial ring is a regular sequence.
 - (c) Show that a sequence of monomials in a polynomial ring is a regular sequence if and only if no two of the monomials have a variable factor in common.
- (2) Let $x, y \in R$ be a regular sequence on an *R*-module *M*. Show that, for any "coincidence" xm = yn with $m, n \in R$, there is a "perfectly good explanation" $t \in M$ such that n = xt and m = yt. Now, find a module over a ring with a coincidence that has no perfectly good explanation.

(3) PERMUTING REGULAR SEQUENCES.

- (a) In K[x, y, z], show that x, y(x 1), z(x 1) is a regular sequence, but y(x 1), z(x 1), x isn't.
- (b) If (R, \mathfrak{m}) is Noetherian local, and $f, g \in \mathfrak{m}$, show that f, g is a regular sequence if and only if g, f is.
- (c) If (R, \mathfrak{m}) is Noetherian local, and $f_1, \ldots, f_t \in \mathfrak{m}$, show that f_1, \ldots, f_t is a regular sequence if and only if any permutation of it is.
- (d) Explain what small change you need to make to your argument to show the same statement for homogeneous elements in a graded ring.
- (4) MAXIMAL REGULAR SEQUENCES: If (R, \mathfrak{m}) is Noetherian local, and M is finitely generated, any two maximal regular sequences on M have the same length.
 - (a) Why do maximal regular sequences even exist in this case?
 - (b) Take a_1, \ldots, a_n to be a maximal regular sequence on M with n minimal, and b_1, \ldots, b_n another regular sequence on M. Explain why it suffices to show that every element of \mathfrak{m} is a zerodivisor on $M/(b_1, \ldots, b_n)$. We will induce on n.
 - (c) For the case n = 1, find an element $m \in M$ such that $\mathfrak{m}m \subseteq a_1M$, so $b_1m = a_1m'$ for some m'. Show that \mathfrak{m} annihilates $\overline{m'} \in M/(b_1)M$,¹ and conclude this case.
 - (d) Now suppose the claim is true for all modules in which there is a maximal regular sequence of length < n. Take an element $c \in \mathfrak{m}$ that is a nonzerodivisor on $M/(a_1, \ldots, a_i)M$ and $M/(b_1, \ldots, b_i)M$ for all i < n. Why does such an element exist?
 - (e) Show that a_1, \ldots, a_{n-1}, c is a maximal regular sequence on M, that c, a_1, \ldots, a_{n-1} is a maximal regular sequence on M, apply the induction hypothesis to M/(c)M, and conclude the proof.

¹Hint: Go deeper into the rabbithole—multiply by a_1 .

DEFINITION: Let (R, \mathfrak{m}) be a local ring. The **depth** of a module M is the maximal length of a regular sequence on M, denoted depth(M). The **depth** of R is depth(R).

- (5) Let (R, \mathfrak{m}) be a Noetherian local ring. Show that depth $(R) = 0 \iff \mathfrak{m} \in Ass(R)$.
- (6) What is the depth of $\mathbb{Z}_{(p)}$? What is the depth of $K[x_1, \ldots, x_n]_{(x_1, \ldots, x_n)}$, for K a field?
- (7) Show that if x_1, \ldots, x_a is a regular sequence on M, then depth $(M) = a + depth(M/(x_1, \ldots, x_a)M)$, and that this is the same whether we consider this as an R-module or as an R/(x)-module.
- (8) Show that if x_1, \ldots, x_a is a regular sequence in a Noetherian ring R, then height $((x_1, \ldots, x_a)) = a$. Conclude that depth(S) < dim(S) for S Noetherian local.
- (9) What is the depth of
 - (a) $K[x,y]_{(x,y)}/(x^2,xy)$?
 - (b) $K[x, y, z]_{(x,y,z)}/(xy, xz)$? (c) $K[x, y, z]_{(x,y,z)}/(x^2 yz)$?

 - (d) $\frac{K[u, v, x, y]_{(u, v, x, y)}}{(xu, xv, yu, yv)}$
- (10) DEPTH AND DIMENSION OF ASSOCIATED PRIMES: If (R, \mathfrak{m}) is Noetherian local, and $M \neq 0$ is finitely generated, then depth(M) $\leq \min\{\dim(R/\mathfrak{p}) \mid \mathfrak{p} \in \operatorname{Ass}(M)\}.$
 - (a) For the proof, fix $\mathfrak{p} \in Ass(M)$. We may as well assume that depth(M) > 0, so there is some nonzerodivisor $x \in \mathfrak{m}$ on M.
 - (b) Take z such that $Rz \subseteq M$ is a maximal element in the set $\{Ra \subseteq M \mid \mathfrak{p}(Ra) = 0\}$. Show that $\overline{z} \in M/(x)M$ is nonzero, and that $\mathfrak{p} + (x) \subseteq \operatorname{ann}(\overline{z})$.
 - (c) Show that there is some $\mathfrak{q} \in \operatorname{Ass}(M/(x)M)$ such that $\mathfrak{q} \supseteq \mathfrak{p}$. Conclude the proof.