DEFINITION:

- A monomial ideal in a polynomial ring $R = K[x_1, \ldots, x_n]$ is an ideal generated by monomials.
- A monomial $\prod_i x_i^{a_i}$ is squarefree if $a_i \in \{0, 1\}$ for all *i*.
- A squarefree monomial ideal is an ideal generated by squarefree monomials.
- A simplicial complex Δ on a set S is a collection of subsets of S (i.e., $\Delta \subseteq \mathcal{P}(S)$) such that $G \in \Delta$ and $F \subseteq G$ implies $F \in \Delta$.
- (1) Show that if

$$I = \left(\prod_{i} x_i^{a_{1,i}}, \dots, \prod_{i} x_i^{a_{t,i}}\right)$$

is a monomial ideal in $K[x_1, \ldots, x_n]$, then

$$\sqrt{I} = \left(\prod_{i} x_{i}^{\overline{a_{1,i}}}, \dots, \prod_{i} x_{i}^{\overline{a_{t,i}}}\right),$$

where $\overline{a_{j,i}} = 1$ if $a_{j,i} > 0$ and 0 if $a_{j,i} = 0$.

- (2) Show that a monomial ideal is radical if and only if it is a squarefree monomial ideal.
- (3) Show that the rule

$$I \quad \mapsto \quad \{S \subseteq [n] \mid \prod_{i \in S} x_i \notin I\}$$

induces a containment-reversing bijection¹ between squarefree monomial ideals in $K[x_1, \ldots, x_n]$ and simplicial complexes on the set $[n] := \{1, \ldots, n\}$.

- (4) Given a squarefree monomial ideal I, describe the minimal primes of I in terms of the combinatorics of the simplicial complex described in the previous problem.
- (5) Express the following ideals as intersections of prime ideals:
 - (a) I = (xy, xz, yz)
 - (b) I = (xu, xv, yu, yv),
 - (c) I = (xyz, ux, uy, vy, vz),
 - (d) I = (uyz, vxz, uvz, wxy, uwy, vwx).

¹DEFINITION: The **Stanley-Reisner ideal** of a simplicial complex is the ideal obtained by the inverse map to the one stated above.