DEFINITION: The **spectrum**, or **prime spectrum** of a ring R is the set of prime ideals of R, denoted Spec(R).

The spectrum of a ring is enriched with two other structures:

- Spec(R) is a *poset* under containment: $\mathfrak{p} \leq \mathfrak{q}$ if $\mathfrak{p} \subseteq \mathfrak{q}$.
- Spec(R) is a topological space with closed sets $V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{p} \supseteq I \}.$

The **maximal spectrum** of a ring R is the set of maximal ideals of R, denoted Max(R). We give it the subspace topology induced from the inclusion $Max(R) \subseteq Spec(R)$. That is, the closed subsets of Max(R) are the subsets of the form $V_{Max}(I) := \{\mathfrak{m} \in Max(R) \mid \mathfrak{m} \supseteq I\}$. Note that the poset structure on Max(R) is trivial.

- (1) Some first examples of prime spectra:
 - a) What are the elements of Spec(Z)? Draw a (partial) picture of Spec(Z) as a poset. What are the closed subsets?
 - b) What are the elements of $\text{Spec}(\mathbb{C}[x])$? Draw a (partial) picture of $\text{Spec}(\mathbb{C}[x])$ as a poset. What are the closed subsets?
- (2) Let K be an algebraically closed field, and $R = K[\underline{x}]$. What does the Nullstellensatz say about the points of Max(R)? What are the closed subsets of Max(R)?
- (3) Let R be a ring, and I an ideal. Find a natural homeomorphism between $V(I) \subseteq \text{Spec}(R)$ (with the subspace topology) and Spec(R/I). Now, draw a picture of $\text{Spec}(\mathbb{C}[x,y]/(xy))$ as a poset.
- (4*) Let X be a compact manifold, and $R = \mathcal{C}(X, \mathbb{R})$ be the ring of continuous functions from X to \mathbb{R} . a) Show that if $I \subsetneq R$ is an ideal, then there is some $x \in X$ such that f(x) = 0 for all $f \in I$. b) Find a bijection between Max(R) and X.
 - c) Show that your bijection takes closed subsets of Max(R) to closed subsets of X.
 - d) Show that your bijection is a homeomorphism.
- (5) Let $R = \mathbb{C}\{x, y\}$ be the ring of complex power series in $\mathbb{C}[\![x, y]\!]$ that converge on some ball containing the origin.
 - a*) Show that if $f(0,0) \neq 0$, then f is a unit in R. Conclude that R has a unique maximal ideal (x, y).
 - b*) Show that every prime $\mathfrak{p} \in \operatorname{Spec}(R)$ other than (0) and (x, y) is principal.
 - c) Draw a rough picture of Spec(R) as a poset.
 - d) Can you give a geometric interpretation for Spec(R)? Why is this a much more interesting object that Max(R)?
- (6) Let R be a ring.
 - a) Show that if I,J are ideals, then $V(I)\cup V(J)=V(I\cap J)=V(IJ).^1$
 - b) Show that if $\{I_{\lambda}\}_{\lambda \in \Lambda}$ is a family of ideals, then $\bigcap_{\lambda \in \Lambda} V(I_{\lambda}) = V(\sum_{\lambda \in \Lambda} I_{\lambda}).$
 - c) Conclude that what we claimed was a topology is legitimately a topology!
 - d) Show that $\{\mathfrak{p}\} = V(\mathfrak{p})$, the upper poset interval determined by \mathfrak{p} .

¹I recommend $V(I) \cup V(J) \subseteq V(I \cap J) \subseteq V(IJ) \subseteq V(I) \cup V(J)$.

- (7) Poset structure of Spec vs topological structure
 - a) How can you recover the poset structure of Spec(R) from the topological structure of Spec(R)?
 - b) Show that every closed subset $X \subseteq \text{Spec}(R)$ is *specialization-closed*; i.e., $\mathfrak{p} \in X$ and $\mathfrak{p} \subseteq \mathfrak{q}$ implies $\mathfrak{q} \in X$.
 - c) Find a ring R and a specialization-closed subset $X \subseteq \text{Spec}(R)$ that is not closed.
 - d) Show that every element of V(I) contains a minimal element of V(I). Conclude that every closed set is the union of upper intervals determined by its minimal elements.
 - e) Conversely, show that every union of *finitely many* upper intervals is closed.²
- (8*) THE "VSATZ": Let R be a ring, and I, J be ideals. One has V(I) = V(J) if and only if $\sqrt{I} = \sqrt{J}$. Hence, there is an order-preserving bijection between radical ideals of R and closed subsets of Spec(R).

DEFINITION: If $\varphi : R \to S$ is a ring homomorphism, the **induced map on spectra** is the map $\varphi^* : \operatorname{Spec}(S) \to \operatorname{Spec}(R)$ given by $\mathfrak{q} \mapsto \varphi^{-1}(\mathfrak{q})$. We sometimes write $\mathfrak{q} \cap R$ for $\varphi^{-1}(R)$; this is honest when φ is an inclusion map.

- (9) Show that φ^* is well-defined and continuous.
- (10) Find a pair of rings R, S, and a ring homomorphism $\varphi : R \to S$ for which φ^* does not restrict to a function from $Max(S) \to Max(R)$.
- (11) In this problem, we will show that if R and S are finitely generated algebras over a field K, then φ^* restricts to a map from $Max(S) \to Max(R)$.
 - a) Show that if $A \to B$ is integral, then every element of B has a nonzero multiple in A.
 - b) Show that if K is a field, and A is a domain that is integral over K, then A is also a field.
 - c) Prove the statement.
- (12) Let K be an algebraically closed field, and $R = K[x_1, \ldots, x_m]/I$ and $S = K[y_1, \ldots, y_n]/J$ be finitely generated K-algebras.
 - a) Show that for every K-algebra map $f : R \to S$, there is a map $F : K[x_1, \ldots, x_m] \to K[y_1, \ldots, y_n]$ given by $(x_1, \ldots, x_m) \mapsto (f_1(\underline{y}), \ldots, f_m(\underline{y}))$ for some polynomials f_1, \ldots, f_m such that the following diagram commutes:

- b) In the context of the previous part, show that the map $\Phi: K^n \to K^m$ given by $\Phi(a_1, \ldots, a_n) = (f_1(\underline{a}), \ldots, f_m(\underline{a}))$ restricts to a map $\Phi: Z_K(J) \to Z_K(I)$.
- c) Again, with the same notation, show that $f^*(\mathfrak{m}_a) = \mathfrak{m}_{\Phi(a)}$.
- d) If $\alpha : \mathbb{C}[x, y, z] \to C[x, y, z]$ is given by $\alpha(x) = x^2 y, \alpha(y) = xz, \alpha(z) = 1 z$, what is $\alpha^*((2x 1, 3x + iy \pi z, z))?$

²We close the gap between these counterpart statements for a certain class of rings soon.