Worksheet on Noetherian rings and modules

DEFINITION: A ring R is **Noetherian** if every ascending chain of ideals of R,

 $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$

eventually stabilizes: there is some N for which $I_n = I_{n+1}$ for all $n \ge N$.

- (1) Show that each of the following is equivalent to R being Noetherian:
 - a) Every nonempty family of ideals $\{I_{\lambda}\}_{\lambda \in \Lambda}$ has a maximal element¹.
 - b) Every ascending chain of *finitely generated* ideals eventually stabilizes.
 - c) Given any generating set S for an ideal I, the ideal I is generated by a finite subset of S.
 - d) Every ideal of R is finitely generated.
- (2) a) Show that if R is Noetherian and $I \subseteq R$, then R/I is Noetherian.
 - b) Show that if R/(f) is Noetherian for all $f \in R \setminus \{0\}$, then R is Noetherian.
- (3) Show that fields and principal ideal domains are Noetherian.
- (4) Which of the following rings is Noetherian?
 - (a) \mathbb{Q}
 - (b) Z
 - (c) $\mathbb{R}[x]$
 - (d) $\mathcal{C}(\mathbb{R},\mathbb{R})$, the ring of continuous real-valued functions in one variable.
 - (e) $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$, the ring of smooth real-valued functions in one variable.
 - (f) $\mathbb{C}\{z\}$, the subring of $\mathbb{C}[\![z]\!]$ consisting of functions holomorphic on a neighborhood of z = 0.
 - (g) The polynomial ring $\mathbb{C}[x_1, x_2, x_3, ...]$ in countably many variables.
- (5^*) Show that R is Noetherian if and only if every prime ideal of R is finitely generated.
- (6^{*}) If the set of prime ideals in R satisfies ACC, must R be Noetherian?

DEFINITION: An *R*-module *M* is **Noetherian** if every ascending chain of submodules of *M*,

$$M_1 \subseteq M_2 \subseteq M_3 \subseteq \cdots$$

eventually stabilizes: there is some N for which $M_n = M_{n+1}$ for all $n \ge N$.

- (7) Show that R is a Noetherian ring if and only if R is a Noetherian R-module.
- (8) Convince yourself that essentially the same argument as in (1) shows that each of the following is equivalent to M being Noetherian:
 - a) Every nonempty family of submodules $\{M_{\lambda}\}_{\lambda \in \Lambda}$ has a maximal element.
 - b) Every ascending chain of *finitely generated* submodules eventually stabilizes.
 - c) Given any generating set S for a submodule N, the submodule N is generated by a finite subset of S.
 - d) Every submodule of M (including M itself!) is finitely generated.

¹This means that there is a $\gamma \in \Lambda$ such that $I_{\gamma} \not\subseteq I_{\lambda}$ for any $\lambda \in \Lambda$.

- (9) Let $N \subseteq M$ be *R*-modules.
 - a) Show that if M is Noetherian, then N and M/N are both Noetherian.
 - b) Use the Lemma below to show that if N and M/N are Noetherian, then M is Noetherian.

LEMMA: Let M be a module, and $M' \subseteq M''$ and N all be submodules of M. Then M' = M'' if and only if $M' \cap N = M'' \cap N$ and $M'/(M' \cap N) = M''/(M'' \cap N)$.

- (10) Let R be a Noetherian ring, and M an R-module. Show that M is Noetherian if and only if it is finitely generated. Conclude that in a Noetherian ring, every submodule of a finitely generated module is finitely generated.
- (11^{*}) Find examples of each of the following: a ring R and R-module M such that
 - a) R and M are both Noetherian;
 - b) R is Noetherian and M is not;
 - c) R is not Noetherian and M is;
 - d) neither R nor M are Noetherian.

THEOREM (THE HILBERT BASIS THEOREM): If R is Noetherian, then R[x] is Noetherian.

- (12) This problem outlines a proof of the Hilbert Basis Theorem.
 - a) For a polynomial $f(x) = r_n x^n + r_{n-1} x^{n-1} + \cdots + r_0$, with $r_i \in R$ and $r_n \neq 0$, we set $LT(f) = r_n \in R$. Show that if $I \subset R[x]$ is an ideal, then $LT(I) := \{LT(f) \mid f \in I\}$ is a (possibly improper) finitely generated ideal of R.
 - b) Pick $f_1, \ldots, f_t \in I$ such that $LT(I) = (LT(f_1), \ldots, LT(f_t))$, and set $N = \max_i \{ \deg(f_i) \}$. Show that every element $f \in I$ can be written as $f = \sum_i r_i f_i + g$ with $g \in I$ of degree less than N.
 - c) Show that the set of $g \in I$ of degree less than N is a finitely generated R-module.
 - d) Finish the proof.
- (13) Prove the corollary: if R is Noetherian, then every finitely generated R-algebra is Noetherian. In particular, finitely generated algebras over fields are Noetherian.