Worksheet on finiteness of normalizations

DEFINITION: If $K \subseteq L$ is a module-finite extension of fields, the **trace map** from L to K is $\operatorname{Tr}_{L/K}(l) = \operatorname{trace} \text{ of } K\text{-linear map } L \xrightarrow{l} L.$

- (1) PROPERTIES OF TRACE: Prove the following properties.
 - (a) The map $\operatorname{Tr}_{L/K} : L \to K$ is K-linear.
 - (b) $\operatorname{Tr}_{L/K}(x) = [L:K]x$ for $x \in K$.
 - (c) $-\operatorname{Tr}_{K(x)/K}(x)$ is the second coefficient of the minimal polynomial of x over K.
 - (d) If $K \subseteq L \subseteq M$ are fields, then $\operatorname{Tr}_{M/K} = \operatorname{Tr}_{L/K} \circ \operatorname{Tr}_{M/L}$.
- (2) Show that if $K \subseteq L$ is a module-finite extension of fields, R is a normal subring of K, and $x \in L$ is integral over R, then $\operatorname{Tr}_{L/K}(x) \in R$.

FINITENESS THEOREM 1: Let R be a Noetherian normal domain, K its fraction field, and L a module-finite separable extension field of K. The integral closure S of R in L is module-finite over R, and hence Noetherian.

- (3) PROOF OF FINITENESS THEOREM 1 IN CHARACTERISTIC ZERO: Suppose K has characteristic zero.
 - (a) Show that there is a K vector space basis $\{s_1, \ldots, s_d\}$ for L consisting of elements in S.
 - (b) Show that there is a K vector space basis $\{t_1, \ldots, t_d\}$ for L such that $\operatorname{Tr}_{L/K}(s_i t_j) = 1$ if i = j and 0 if $i \neq j$.
 - (c) Show that $S \subseteq Rt_1 + \cdots + Rt_d$.
 - (d) Conclude the proof of the theorem in characteristic zero.
- (4) Show that if K is a field of characteristic zero or p > 0, and L is a module-finite separable extension field of K, with L then there is some $l \in L$ such that $\operatorname{Tr}_{L/K}(l) \neq 0$.
- (5) Prove Finiteness Theorem 1 above in general.

FINITENESS THEOREM 2: Let R be a domain that is algebra-finite over a field k. Let K be the fraction field of R, and L be a module-finite separable extension field of K. Then the integral closure of R in L is module-finite over R.

In particular, if R is a domain that is algebra-finite over a field k, the normalization of R is module-finite over R.¹

- (6) Prove Finiteness Theorem 2 in the case k has characteristic zero.²
- (7) Prove Finiteness Theorem 2 in general.

¹This is a theorem of Emmy Noether.

²Hint: Replace R by a Noether normalization, and apply Finiteness Theorem 1.

COUNTEREXAMPLE TO FINITENESS THEOREM 1 IN LIEU OF SEPARABILITY: Let $t_0, t_1, t_2, t_3, \ldots$ be an infinite sequence of indeterminates over \mathbb{F}_p . Let $K_0 = \mathbb{F}_p(t_0^p, t_1^p, t_2^p, t_3^p, \ldots)$, and

$$K_0 \subseteq K_1 := K_0(t_0) \subseteq K_2 := K_1(t_1) \subseteq \cdots \subseteq K := \bigcup_{n \in \mathbb{N}} K_n.$$

Let $R = \bigcup_{n \in \mathbb{N}} K_n[\![x]\!] \subseteq K[\![x]\!]$. Let $u = \sum_{i=0}^{\infty} t_i x^i$. Then the integral closure of R in the fraction field of R adjoined u is not module-finite over R.³

- (8) PROOF OF COUNTEREXAMPLE:
 - (a) Show that $R \neq K[\![x]\!]$, but $(K[\![x]\!])^p \subseteq R$.
 - (b) Show that $\operatorname{frac}(R)(u)$ is a module-finite extension field of $\operatorname{frac}(R)$.
 - (c) Show that every element of R is a equal to a multiple of x times a unit in R.
 - (d) Show that R is a Noetherian normal domain.
 - (e) For $i \in \mathbb{N}$, set $u_i = \sum_{j=0}^{\infty} t_{i+j} x^j$. Show that $u_i \in \operatorname{frac}(R)(u)$, and that u_i is integral over R.
 - (f) Show that, for all $i \in \mathbb{N}$, $u_i \notin Ru_0 + Ru_1 + \cdots + Ru_{i-1}$.
 - (g) Conclude the proof of the counterexample.
- (9) Show that, in the previous counterexample, the ring S = R[u] is a Noetherian domain such that the normalization of S is not module-finite over S.

³This is an example of M. Nagata.