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Chapter 0

Introduction

0.1 What am I?

These are lecture notes from the Winter 2018 semester section of Math 615, Commutative Algebra
II, at The University of Michigan. The topic for the semester was local cohomology. The course
is designed for people who have taken a first course in Commutative Algebra, like Math 614 at
Michigan, and a class in Algebraic Topology or Homological Algebra. The notes draw largely from
Mel Hochster’s notes on the same topic, Craig Huneke’s lectures on local cohomology, and the
book Twenty-four Hours of Local Cohomology. Many thanks are due to Elóısa Grifo, who helped
with typing these up, and to the students in the class, who corrected many typos and asked many
interesting questions that prompted some of the material. Additional thanks to Eamon Quinlan-
Gallego, Taylor Murray, and David Lieberman for finding typos in these notes. Thanks are also
due to the NSF for its support by grant DMS #1606353.

0.2 Where are we going?

Is Rm homeomorphic to Rn? An obstruction is the (co)homology of the pair Hi(X,X \ {pt}):

Hi(Rn,Rn \ {pt};G) =

{
G if i = n
0 if i 6= n.

Our main object of study is an algebraic analogue of this:

Hi(X,X \ Z;A) Hi
I(M)

Z ⊆ X A
closed ab. group

I ⊆ R M
ideal R-mod

X Spec(R)

Z V(I)

For example, this object Hi
I(M) will detect dimension:

max
{
t | Ht

m(R) 6= 0
}

= dimR ((R,m) local ring).

But, if Spec(R) does not correspond to a nonsingular variety (compare to X not a manifold)
then there might be more than one nonvanishing Ht

m(R).
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Two key applications of local cohomology:

? Number of equations needed to cut out a subvariety: The ideal

I = (∆1,∆2,∆3) ⊆ k
[
x1 x2 x3

y1 y2 y3

]
= R

corresponds to the variety of rank 1 2 × 2 matrices. We can see easily that V(I) 6= V(f) for
any f ∈ R; ht(I) = 2, and this would contradict Krull’s Height Theorem. It is less obvious
whether V(I) = V(f, g) for some f, g ∈ R.

? Connectedness Theorems: Local cohomology detects a lot of information about the topology
of the Spec of a ring / of a variety. The Fulton-Hanson connectedness theorem, which we’ll
prove, says that if X,Y ⊆ Pn, and dimX + dimY > n, then X ∩ Y is connected.

For these reasons, we will be interested in the (non)vanishing of these modules. A catch: they
will not usually be finitely generated.

Example 0.1. Let R = k[x1, . . . , xn], k be a field, and m = (x1, . . . , xn). Then Hn
m(R) is the

k-vector space structure ⊕
all ai>0

k · 1

xa1
1 · · ·x

an
n
,

with R-module structure given by

xb11 · · ·x
bn
n ·

γ

xa1
1 · · ·x

an
n

=

{
γ

x
a1−b1
1 ···xan−bn

n

if all bi < ai

0 otherwise.

This is not a finitely generated module! Note that every finitely generated submodule only has
terms with bounded negative degree.

But this is still a very nice module: it looks like R upside down.

· · · · ·

x3
x

^^
y

==

x2y
x

bb
y

<<

xy2
x

bb
y

<<

y3

`` @@

x2
x

__

y

>>

xy
x

aa

y

==

y2
x

``
y

??

x
x

aa

y

<<

y
x

bb
y

==

1
x

cc

y

;;

k[x, y]

1
xy

1
x2y

x
??

1
xy2

y__

1
x3y

x
@@

1
x2y2

y__ x
??

1
xy3

y^^

·
x
AA

·
x
==y``

·
x
>>

yaa

·
y]]

H2
(x,y) (k[x, y])

So we will want to develop the right notion of upside down (Matlis Duality), and a number of
senses in which local cohomology modules are well-behaved or finite (for example, using differential
operators).

Local cohomology modules are given by right-derived functors, so they are computed via injec-
tive resolutions. We will need to understand injective modules.

Local cohomology modules are also intrinsically related to Ext (very) and Tor, so we will want
to understand how these (and free resolutions) are related to qualitative properties of R.



Chapter 1

Preliminaries

1.1 Ext, Tor, and derived functors

Recall the following properties of the Hom and tensor functors:

Lemma 1.1. Let M be an R-module.

• The covariant functor HomR(M,−) is left exact, meaning that given an exact sequence

0 // A // B // C the sequence 0 // HomR(M,A) // HomR(M,B) // HomR(M,C) is
exact.

• The contravariant functor HomR(−,M) is left exact, meaning that given an exact sequence

A // B // C // 0 the sequence 0 // HomR(C,M) // HomR(B,M) // HomR(A,M) is
exact.

• The covariant functor −⊗RM is right exact: given an exact sequence A // B // C // 0,

the sequence A⊗RM // B ⊗RM // C ⊗RM // 0 is exact.

Recall that an R-module M is projective if HomR(M,−) is an exact functor, or injective if
HomR(−,M) is an exact functor. Equivalently, M is projective (respectively, injective) if every
short exact sequence of the form

0→ A→ B →M → 0 (respectively, 0→M → A→ B → 0)

splits. We will work with exact sequences, but also more generally with complexes of R-modules.

Idea 1.2. Given a module M , we would like to continue the short exact sequences above: if
0 // A // B // C // 0 is a short exact sequence, we would like to understand what comes next
“?” in

0 // HomR(C,M) // HomR(B,M) // HomR(A,M) // ?

Functors are happiest with split exact sequences. If C happened to be projective, then the given
short exact sequence would split, yielding another short exact sequence 0 Aoo Boo Coo 0oo ,
and by left exactness again, an exact sequence

HomR(C,M)oo HomR(B,M)oo HomR(A,M)oo 0oo .

Since the mapsA→ B → A compose to the identity, the induced maps HomR(A,M)→ HomR(B,M)→
HomR(A,M) compose to the identity, so “?”= 0. To get a handle on “?” in general, we would like
to try to replace the modules “−” we feed into HomR(−,M) with projectives.
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Similarly, to get a handle on completing short exact sequences with HomR(M,−), we want to
try to replace the modules “−” we feed in with injectives. (Think about why we want injectives
rather than projectives in this case if this isn’t clear to you.)

Definition 1.3 (Complex). A complex of R-modules C• is a sequence of R-modules and homo-
morphisms of R-modules

C• = · · · // Cn+1
δn+1 // Cn

δn // Cn−1
// · · ·

such that δnδn+1 = 0 for all n.
The n-th homology module of a complex C• is the R-module Hn(C•) = ker δn/ im δn+1. A

complex is exact at Cn, or in homological degree n, if Hn(C•) = 0.

Remark 1.4. A complex might be indexed homologically, with maps between decreasing homolog-
ical degrees, as above, or cohomologically, with maps between modules in increasing homological
degrees, as follows:

C• = · · · // Cn−1 δn−1
// Cn

δn // Cn+1 // · · ·

In this case, the cohomology of C• is given by

Hn(C•) = ker δn/ im δn−1.

Projective and injective resolutions are exact complexes of particular interest.

Definition 1.5 (Projective and injective resolutions). Let M be an R-module.

• A projective resolution of M is a complex

P• = · · · // P2
δ2 // P1

δ1 // P0
// 0

such that

Hi(P•) =

{
M if i = 0
0 if i > 0.

If the modules Pi are all free, we say that P• is a free resolution of M .

• An injective resolution of M is a complex

I• = 0 // I0 δ0
// I1 δ1

// I2 // · · ·

such that

Hi(I•) =

{
M if i = 0
0 if i > 0.

We will often add on a “(→M)” before the last “→ 0” at the end of a projective resolution to
indicate what we are resolving; note that the resulting complex with no parentheses is now exact.

Projective and injective resolutions are not unique, but there is (under some hypotheses) a
distinguished projective (respectively, injective), called the minimal projective (respectively, in-
jective) resolution of M . We will discuss these in more detail later.

We also note that the category of R-modules has enough projectives and enough injectives,
meaning that for every R-module there exists a projective module P surjecting onto M and an
injective module I containing M . As a consequence, every R-module has a projective resolution
and an injective resolution.

We can now define derived functors.
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Definition 1.6.

• Let F : R-mod −→ R-mod be a covariant left exact functor. The right derived functors
RiF of F are a sequence of functors RiF : R-mod −→ R-mod. To compute RiF (N) for each
R-module N , we start by finding an injective resolution of N

I• = 0 // (N // )I0
δ1 // I1

δ1 // I2
// · · · .

Then we apply F to I•, obtaining a complex

0 // F (I0)
F (δ1) // F (I1)

F (δ1) // F (I2) // · · · .

Note that this complex may no longer be exact. However, the i-th cohomology of this complex
is RiF (N). Note that R0F (N) = F (N).

• Let F : R-mod −→ R-mod be a contravariant left exact functor. The right derived functors
RiF of F are a sequence of functors RiF : R-mod −→ R-mod. To compute RiF (N) for each
R-module N , we start by finding a projective resolution of N ,

P• = · · · // P2
δ2 // P1

δ1 // P0( // N) // 0 .

Then we apply F to P•, obtaining a complex

0 // F (P0)
F (δ1) // F (P1)

F (δ1) // F (P2) // · · · .

The i-th cohomology of this complex is RiF (N). Note that R0F (N) = F (N).

• Let F : R-mod −→ R-mod be a covariant right exact functor. The left derived functors
LiF of F are a sequence of functors LiF : R-mod −→ R-mod, i > 0. To compute RiF (N)
for each R-module N , we start by finding a projective resolution of N ,

P• = · · · // P2
δ2 // P1

δ1 // P0( // N) // 0 .

Then we apply F to P•, obtaining a complex

· · · // F (P2)
F (δ2) // F (P1)

F (δ1) // F (P0) // 0 .

The i-th homology of this complex is LiF (N). Note that L0F (N) = F (N).

• Let F : R-mod −→ R-mod be a contravariant right exact functor. The left derived functors
RiF of F are a sequence of functors LiF : R-mod −→ R-mod. To compute LiF (N) for each
R-module N , we start by finding an injective resolution of N

I• = 0 // (N // )I0
δ1 // I1

δ1 // I2
// · · · .

Then we apply F to I•, obtaining a complex

· · · // F (I2)
F (δ2) // F (I1)

F (δ1) // F (I0) // 0 .

Note that this complex may no longer be exact. However, the i-th cohomology of this complex
is LiF (N). Note that L0F (N) = F (N).
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Left exact functor Right exact functor

covariant functor takes left exact to left exact
use: injective resolutions

takes right exact to right exact
use: projective resolutions

contravariant functor takes right exact to left exact
use: projective resolutions

takes left exact to right exact
use: injective resolutions

Remark 1.7. The left/right derived functors of a right/left exact functor are well-defined, meaning
that different projective/injective resolutions yield isomorphic functors.

Remark 1.8. If R is noetherian, and M is finitely generated, then M admits a free resolution
by finitely generated modules: take a free module with a basis corresponding to generating set for
M and map it onto M . The kernel of this map is finitely generated (by noetherianity), so we can
repeat this over an over to get a free resolution.

On the other hand, a positive dimensional ring does not have any finitely generated injective
modules (which you can take as an exercise for now, or return to later when we study the structure
of injectives).

Remark 1.9. A map of R-modules f : M −→ N can be lifted to a map between projective/injective
resolutions of M . More precisely, given projective resolutions P• and Q• of N and M and injective
resolutions I• and J• of N and M , there exist commutative diagrams

· · · // P2
δ2 // P1

δ1 // P0( // N) // 0

· · · // Q2

f2

OO

δ2 // Q1

f1

OO

δ1 // Q0(

f0

OO

//M)

f

OO

// 0

and

0 // (N // )I0
δ1 // I1

δ2 // I2
// · · ·

0 // (M //

f

OO

)J0

g0

OO

δ1 // Q1

g1

OO

δ2 // J2

g2

OO

// · · ·

Applying a left/right exact functor to a short exact sequence gives rise to a long exact sequence
involving the corresponding derived functors. In other words, the derived functors of F measure
the failure of F to be exact.

Lemma 1.10. Consider a short exact sequence 0 // A // B // C // 0 .

• If F is a covariant left exact functor, there is a long exact sequence

0 // F (A) // F (B) // F (C) // R1F (A) // · · ·

· · · // Ri−1F (C) // RiF (A) // RiF (B) // RiF (C) // Ri+1F (A) // · · ·

.

• If F is a contravariant left exact functor, there is a long exact sequence

0 // F (C) // F (B) // F (A) // R1F (C) // · · ·

· · · // Ri−1F (A) // RiF (C) // RiF (B) // RiF (A) // Ri+1F (C) // · · ·

.
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• If F is a covariant right exact functor, there is a long exact sequence

· · · // Li+1F (C) // LiF (A) // LiF (B) // LiF (C) // Li−1F (A) // · · ·

· · · // L1F (C) // F (A) // F (B) // F (C) // 0

.

• If F is a covariant right exact functor, there is a long exact sequence

0 // F (A) // F (B) // F (C) // L1F (A) // · · ·

· · · // Li−1F (C) // LiF (A) // LiF (B) // LiF (C) // Li+1F (A) // · · ·

.

Lemma 1.11. Let F be a left exact functor, G be a right exact functor, M be an R-module, and x ∈
R. If the map M

.x //M given by multiplication by x induces the maps F (N)
.x // F (N) and

G(N)
.x // G(N) for all modules N , then RiF (M)

.x // RiF (M) and LiF (M)
.x // LiF (M) .

Proof. We note that the map .x on M lifts to multiplication by x on a projective or injective
resolution of M .

We can now define two especially important derived functors, Ext and Tor.

Definition/Theorem 1.12. Let R be a ring and M and N be R-modules.

• Applying Ri HomR(M,−) to N and Ri HomR(−, N) to M yields isomorphic R-modules,
which we denote by ExtiR(M,N). Following the definitions above, if P• is a projective reso-
lution of M , and I• is an injective resolution of N , then ExtiR(M,N) can be computed as the
i-th homology of

0 // HomR(P0, N) // HomR(P1, N) // HomR(P2, N) // · · · ,

or the i-th cohomology of

0 // HomR(M, I0) // HomR(M, I1) // HomR(M, I2) // · · · .

• Applying Li(− ⊗RM) to N and Li(− ⊗R N) to M yields isomorphic R-modules, which we
denote by TorRi (M,N). Following the definitions above, if P• is a projective resolution of
M , and Q• is a projective resolution of N , then TorRi (M,N) can be computed as the i-th
homology of

· · · // P2 ⊗RM // P1 ⊗RM // P0 ⊗RM // 0 ,

or the i-th homology of

· · · // Q2 ⊗R N // Q1 ⊗R N // Q0 ⊗R N // 0 .

Remark 1.13. One way to show the Tor part of Theorem ?? is to show that if P• → M and
Q• → N are projective resolutions, then TorRi (M,N) = Hi(P• ⊗R Q•), where P• ⊗R Q• is the
tensor product of complexes we will encounter in Definition ??. There is a notion (actually, different
notions) of Hom between two complexes, and one can show the Ext part of loc. cit. by showing that
if if P• →M is a projective resolution and N → E• is an injective resolution, then ExtiR(M,N) =
Hi(HomR(P•, E

•)).
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Definition 1.14. Let I be an ideal in a ring R. The I-torsion functor, is the functor that, on
modules M , returns

ΓI(M) := {m ∈M | ∃n : Inm = 0}.

If ϕ : M → N is a homomorphism and Inm = 0, then for any a ∈ In, aϕ(m) = ϕ(am) = 0, so
φ restricts to a map ΓI(ϕ) := ϕ|ΓI(M) : ΓI(M)→ ΓI(N).

This functor is left-exact: if

0 // A
α // B

β // C

is exact, it is clear that

0 // ΓI(A)
ΓI(α) // ΓI(B)

ΓI(β) // ΓI(C)

is exact at ΓI(A), since the restriction of an injective map is injective. If b ∈ ΓI(B) maps to zero in
ΓI(C), then β(b) = 0, so b = α(a) for some a ∈ A. But, since α is injective, annA(a) = annB(α(a)),
so we must have a ∈ ΓI(A).

One definition of the local cohomology functors is HI
i (−) = RiΓI(−). We will need to understand

injective modules to get a handle on this definition. We will also later find that these functors have a
number of useful relationships with Ext and Tor. We will first study Ext, Tor, and free resolutions,
which have more accessible finiteness properties, and then study the structure of injective modules.

1.2 A first look at free resolutions

What do free resolutions look like? Let us try two examples:

Example 1.15. Consider R = k[x, y] and I = (x, y).

? // R2
(x y)

// R // (R/I // )0

To hit the kernel of the map, we need to find the R-linear relations between x and y:{(
a
b

)
∈ R2 | ax+ by = 0

}
.

ax
?
=− by

R is a UFD, so x| − by. Since x and y are coprime, x| − b. Then:

b = cx

ax = −cxy
a = −cy(

a

b

)
= c

(
−y
x

)

Later:

yb ∈(x)

⇒ b ∈(x)

xv = 0

⇒ v = 0

We now obtain

0 // R
(−y

x )
// R2

(x y)
// R // 0
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Conclusion: the only relation is the “obvious” one. We can use this on I = (f, g) for distinct
irreducible polynomials f , g in k[x]:

0 // R
(−g

f )
// R2

(f g)
// R // (R/(f, g) // )0 .

Example 1.16. Take S = k[x, y, u, v]/(xu− yv) and I = (x, y). As before, a free resolution starts
with

? // R2
(x y)

// R // (R/I // )0 ,

and we want solutions
(
a
b

)
to

ax+ by = 0.

Again, −y · x+ x · y = 0 is a relation, but now u · x− v · y = 0 too.

Claim. Every relation on x, y in S is an S-linear combination of
(−y
x

)
and

(
u
−v
)
.

To see this, note that “monomials” are well-defined in S. Also, relations between monomials
can be decomposed into sums of monomial relations. Use that structure and which are the same
to check any monomial relation is a multiple of one of these.

So now we have

? // R2

−y u
x −v


// R2

(x y)
// R // (R/I // )0 .

We now want solutions to

a

(
−y
x

)
+ b

(
u

−v

)
=

(
0

0

)
. (?)

To solve a · −y + b · u = 0, note that x and u are symmetric in the defining equation of S, so the

previous claim shows that solutions of (?) are generated by
(
v
x

)
and

(
u
y

)
. These solve the second

equation too, so these must be generated by the relations

? // R2

v u
x y


// R2

−y u
x −v


// R2

(x y)
// R // (R/I // )0 .

Now, the solutions
(−y
x

)
and

(
u
−v
)

to ax+ by = 0 also happen to be solutions to av+ bu = 0, so this
keeps repeating, alternating between matrices.

· · · // R2 A // R2 B //// R2 A // R2 B // R2 A // R2 B // R2
(x y)

// R // 0 .

A =

(
u v
x y

)
and B =

(
−y u
x −v

)
.

In the second example, the failure of the cancellation properties led to a much wider resolution.
We want to understand these cancellation properties.
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1.3 Depth and Ext

Definition 1.17 (Regular sequence). Let R be a ring, M an R-module. Elements f1, f2, . . . , ft ∈ R
form an M-sequence or regular sequence on M if:

(1) For each 0 < i 6 t, fi is a nonzerodivisor on M/(f1, . . . , fi−1)M .

(2) M 6= (f1, . . . , ft)M .

A weak R-sequence is only required to satisfy (1).

Example 1.18. f1, . . . , ft is an R-sequence if:

• f1 is a nonzerodivisor on R;

• ((f1) : f2) = (f1)

• ((f1, f2) : f3) = (f1, f2)

...

• ((f1, . . . , ft−1) : ft) = (f1, . . . , ft−1),

• and 1 /∈ (f1, . . . , ft).

Example 1.19. Let R = k[x1, . . . , xt]. Then x1, . . . , xt is an R-sequence: Ri = R/(f1, . . . , fi) is a
domain for each i 6 t, and xi 6= 0 in Ri, so it is a nonzerodivisor. A sequence where each succesive
quotient is a domain is called a prime sequence.

Example 1.20. In k[x, y, z], xy, xz is not a regular sequence:

y(xz) ∈ (xy).

Example 1.21. In R = k[x, y, z], x− 1, xy, xz is an R-sequence, but xy, xz, x− 1 is not.

Definition 1.22 (Depth). The depth of a proper ideal I on an R-module M is the maximal length
of an M -sequence consisting of elements of I. Another name for depthI(M) is the grade of I on
M .

If (R,m) is a local ring, depth(M) := depthm(M).

Remark 1.23. Given an ideal I and a module M , depthI(M) = 0 if and only if there is no
nonzerodivisor on M inside of I.

Our expectation is that depth has to do with free resolutions. We will show an important
relationship between depth and Ext:

Lemma 1.24. Let R be noetherian. Let M be a finitely generated R-module, and I ⊆ R be an
ideal. Then

HomR (R/I,M) 6= 0 if and only if depthI(M) = 0.

Proof. As a module over R, R/I is cyclic, so any R-module map ϕ : R/I −→M is determined by
ϕ(1). On the other hand, 1 must go to some element of M that is killed by I, so

HomR (R/I,M) ∼= annI(M) = (0 :M I).
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So if HomR (R/I,M) 6= 0, then there exists an element of M killed by every element in I. In
particular, no element of I is a nonzerodivisor on M .

Conversely, if depthI(M) = 0, then

I ⊆ {zerodivisors on M} ⊆
⋃

P∈Ass(M)

P.

By Prime Avoidance, there exists some P ∈ Ass(M) such that P ⊇ I. Then

R/I // // R/P //M

gives a nonzero map.

Lemma 1.25. Let M be an R-module, and x = x1, . . . , xt be a weak M sequence contained in some
ideal I. Then

ExttR(R/I,M) ∼= HomR(R/I,M/xM),

and all of the lower Ext’s vanish.

Proof. By induction on t, with t = 0 being trivial.

Induction Hypothesis. ExtjR(R/I, L) ∼= HomR(N,L/yL) whenever y is a weak L-sequence on L of
length j < t.

Let x′ = x2, . . . , xt, and consider the exact sequence

0 //M
x1 //M //M/x1M // 0 .

This leads to a long exact sequence on Ext:

// Exti−1
R (R/I,M)

x1 // Exti−1
R (R/I,M) // Exti−1

R (R/I,M/x1M) // ExtiR(R/I,M)
x1 // ExtiR(R/I,M) // .

The map ·x1 is the map induced by multiplication by x1 on R/I, which is the zero map. Thus
there are short exact sequences

0 // Exti−1
R (R/I,M) // Exti−1

R (R/I,M/x1M) // ExtiR(R/I,M) // 0 .

For i ≤ t, the induction hypothesis gives that Exti−1
R (R/I,M) ∼= HomR(R/I,M/(x1, . . . , xi−1)M)

which is zero by Lemma ?? since i−1 < t, so there is a regular element xi. We then apply the induc-
tion hypothesis with L = M/x1M and y = x′ to obtain ExttR(R/I,M) ∼= Extt−1

R (R/I,M/x1M) ∼=
HomR(R/I,M/(x1, x

′)M) = HomR(R/I,M/xM).

Theorem 1.26 (Rees). Let R be a noetherian ring, I an ideal in R, M a finitely generated module
such that IM 6= M . Then

depthI(M) = min
{
i | ExtiR(R/I,M) 6= 0

}
.

All maximal M -sequences have this common length.
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Proof. Let (f1, . . . , ft) be a maximal M -sequence in I. Then for j < t, f1, . . . , fj is an M -sequence,
and by Lemma ??,

ExtjR(R/I,M) ∼= HomR(R/I,M/(f1, . . . , fj)) = 0,

since fj+1 is a nonzerodivisor on it.

On the other hand,

ExttR(R/I,M) ∼= HomR(R/I,M/(f)M) 6= 0,

since the regular sequence cannot be extended.

Corollary 1.27. If 0→ A→ B → C → 0 is a short exact sequence of finitely generated modules,
then depthI(A) ≥ min{depthI(B),depthI(C) + 1}.

Proof. Exercise. Also, state and prove similar inequalities for the depth on B and C.

Proposition 1.28. Let R be a local ring, M a finitely generated R-module. If x is an M -sequence,
then any permutation of x is an M -sequence as well.

Proof. Since any permutation is a composition of transpositions that switch adjacent numbers, we
may replace M by its quotient by the start of a sequence and reduce to the case of two elements
x, y. If K = annM (y) 3 z, then yz = 0 ∈ xM implies z ∈ xM , since y is regular on M/xM ; write
z = xz′. Now

yz = 0

xyz′ = 0

yz′ = 0 ( since x is regular on M)

Then z′ ∈ K = annM (y), so that K = xK. By NAK, K = 0. Therefore, y is regular on M .

All we need to show now is that x is regular on M/yM . Given m ∈ M , if xm ∈ yM , we want
to show that m ∈ yM .

xm = ym′ ⇒ m′ ∈ xM ⇒ m′ = xm′′,

and

xm′ = xym′′ ⇒ m = ym′′ ⇒ m ∈ yM.

Proposition 1.29. Let R be a local ring and M a finitely generated R-module. If x1, . . . , xt is a
regular sequence on M , then xa1

1 , . . . , x
at
t is a regular sequence on M .

Proof. Using the last proposition, the proof can be reduced to showing that if x1, . . . , xt is a regular
sequence on M , then so is x1, . . . , xt−1, x

a
t , and conversely, for any a > 1. In other words, it is

enough to show x is a regular element on M if and only if xa is. This follows from the fact that

x ∈
⋃

P∈Ass(M)

P if and only if xa ∈
⋃

P∈Ass(M)

P.

Corollary 1.30. If R is a local ring, M finitely generated module, and I an ideal, then depthI(M) =
depth√I(M).
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Remark 1.31. The last two results hold without the assumption that R is local.

Lemma 1.32. Let (R,m) be a local ring, x = x1, . . . , xt ∈ R. Consider the following properties:

(1) x is a regular sequence

(2) ht(x1, . . . , xi) = i for all 1 6 i 6 t

(3) ht(x1, . . . , xt) = t

(4) x is part of a system of parameters for R.

Then (1)⇒ (2)⇒ (3)⇒ (4). In particular, depthI(R) 6 ht(I) for all ideals I.

Proof. For (1)⇒ (2), we have

0 < ht(x1) < ht(x1, x2) < · · · < ht(x),

since xi /∈
⋃

Ass(x1, . . . , xi−1) for each i. The other inequalities follow from Krull’s Height Theorem.

(2)⇒ (3) is trivial.

(3) ⇒ (4) If t = dim(R), then x is a system of parameters. If t < dim(R), then m /∈ Min((x)),
so there exists xt+1 ∈ m \ ∪Min((x)). Continuing this way, we can find a system of parameters
containing x.

We will soon identify the class of rings where all of the statements are equivalent.

1.4 The Koszul complex and depth

Definition 1.33. The tensor product of two complexes of R-modules C• and D• is the complex
C• ⊗R D• with

(C• ⊗R D•)n =
⊕
i+j=n

Ci ⊗R Dj ,

and with differential δn defined on simple tensors x⊗ y ∈ Ci ⊗R Dj by

δn(x⊗ y) = δC•i (x)⊗ y + (−1)ix⊗ δD•i (y).
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...

��

...

��
Ci+1 ⊗Dj+1

1⊗δD•j+1 // Ci+1 ⊗Dj

1⊗δD•j //

δC•i+1⊗1

��

Ci+1 ⊗Dj−1

1⊗δD•j−1 //

δC•i+1⊗1

��

Ci+1 ⊗Dj−2

Ci ⊗Dj+1
1⊗δD•j+1

// Ci ⊗Dj
1⊗δD•j

//

δC•i ⊗1

��

Ci ⊗Dj−1
1⊗δD•j−1

//

δC•i ⊗1

��

Ci ⊗Dj−2

n+1

n Ci−1 ⊗R Dj

δC•i−1⊗1

��

1⊗δD•j // Ci−1 ⊗R Dj−1

δC•i−1⊗1

��

1⊗δD•j−1 // Ci−1 ⊗R Dj−1

n-1

...
...

Definition 1.34 (Koszul complex). The Koszul complex on a sequence of elements f1, . . . , fn
is defined inductively as

K•(f1) = 0 // R
f1 // R // 0

1 0

K•(f1, . . . , fn) = K•(f1, . . . , fn−1)⊗K•(fn).

Example 1.35.

0

��

0

��
0 // R

−g //

f

��

R //

f

��

0

K•(f, g) = = 0 // R
(−g

f )
// R2 (f g) // R // 0

0 // R g
//

��

R //

��

0

2

1 0 0

0

Example 1.36.

K•(f, g, h) = 0 // R


−g
f
h


// R3


−h 0 −g
0 −h −f
f g 0


// R3

(
f g h

)
// R // 0 .
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Remark 1.37. Easy induction arguments show that when f = f1, . . . , fn:

• Ki(f) ∼= R(ni), with a basis naturally indexed by the subsets of I ⊆ [n] of cardinality i; write
ReI for the corresponding free summand.

• The component of the map Ki(f)→ Ki−1(f) from ReI → ReJ is zero if J 6⊂ I, and is ±fi if
I = J ∪ {i}.

• The last map is Rn

(
f1 · · · fn

)
// R , and

• The first map is R


±f1

...
±fn


// Rn .

Definition 1.38. If M is an R-module and f = f1, . . . , fn, then

K•(f ;M) :=K•(f)⊗M
K•(f ;M) := HomR(K•(f),M)

Another easy induction shows that K•(f ;M) ∼= Kn−•(f ;M).

Definition 1.39 (Koszul (co)homology).
The Koszul homology of f on M is Hi(f ;M) := Hi(K•(f1, . . . , fn;M)).

The Koszul cohomology of f on M is Hi(f ;M) := Hi(K•(f ;M)).

By the previous note, Hi(f ;M) ∼= Hn−i(f ;M).

Observation 1.40.

• H0(f ;M) ∼= Hn(f ;M) is the homology of Mn

(
f1 · · · fn

)
//M // 0 , which isM/(f)M .

• Hn(f ;M) ∼= H0(f ;M) is the homology of M


±f1

...
±fn


//Mn // 0 , which is annM ((f)).

Example 1.41. In R = k[x, y],

H1(x, y;R) = homology of R

−y
x


// R2

x
y


// R = 0.

Example 1.42. In R = k[x, y, u, v]/(xu− yv),

H1(x, y;R) =

〈(−y
x

)
,
(
u
−v
)〉〈(−y

x

)〉 .

Note that

x

(
u

−v

)
=

(
xu

−xv

)
=

(
yv

−xv

)
= −v

(
−y
x

)
= 0 in H1(x, y;R).
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Observation 1.43. If C• is a complex, there exists a short exact sequence of complexes

0 // C• // C• ⊗K•(f) // C•(−1) // 0

0 // Cn

1
0


// Cn ⊕ C ′n−1

(
0 (−1)n−1

)
// C ′n−1

// 0

,

where C ′i
∼= Ci, and the ’ indicates that this is the copy tensored with K1(f). Indeed, these are

clearly exact, and we only need to check that these give maps of complexes; i.e., that the maps
above commute with the differentials. An element ν ∈ Cn maps to (ν, 0) in Cn⊕C ′n−1, which maps
to (δ(ν), 0) by the differential on C•⊗K•(f), so the map C• → C•⊗K•(f) is a map of complexes.
Likewise, an element (ν, µ) in Cn ⊕ C ′n−1 maps to an element with second component δ(µ) by the
differential on C• ⊗K•(f), so the map C• ⊗K•(f)→ C•(−1) is a map of complexes as well.

The long exact sequence in homology gives

· · · // Hn(C•) // Hn(C• ⊗K•(f)) // Hn(C ′•(−1))

∼=

δ // · · ·

Hn−1(C•)

.

We claim that the connecting homomorphism agrees with multiplication by f . Indeed, for
[η] ∈ Hi(C

′
•), one has that (0, [η]) ∈ Hi(C•⊗K•(f)) 7→ [η] ∈ Hi(C

′
•). Applying the differential yields

([fη], [δ(g)]) = ([fη], 0) ∈ Hi−1(C• ⊗K•(f)), and [fη] ∈ Hi−1(C•) 7→ ([fη], 0) ∈ Hi−1(C• ⊗K•(f)).

Thus, the long exact sequence breaks into short exact sequences

0 // Hn(C•)
f Hn(C•)

// Hn(C• ⊗K•(f)) // annHn−1(C•)(f) // 0 .

In particular, if x, y is a sequence of elements of R, and M is an R-module,

0 // Hn(x;M)
yHn(x;M)

// Hn(x, y;M) // annHn−1(x)(y) // 0

Theorem 1.44. If f = f1, . . . , ft is a regular sequence on M , then Hi(f ;M) = 0 for i > 0. If R
is a local ring and M is a finitely generated R-module, then the converse holds.

Proof. For t = 1, the Koszul complex is

0 //M
f ////M // 0 ,

which is exact at i > 0 if and only if f is a nonzerodivisor on M .

Now to show the first statement when t > 1, we will use induction:

Induction Hypothesis. Hi(f1, . . . , ft−1;M) = 0 for all i > 0 and all regular sequences f ′ = f1, . . . , ft−1.

Assume that f = f1, . . . , ft is a regular sequence. From

0 // Hi(f
′;M)

ft Hi(f
′;M)

// Hi(f ;M) // annHi−1(f ′)(ft) // 0

0 0

we get Hi(f ;M) = 0 for i > 1.
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When i = 1, since ft is a nonzerodivisor on M/(f ′)M ∼= H0(f ′;M), we get

0 // H1(f ′;M)

ft H1(f ′;M)
// H1(f ;M) // annH0(f ′)(ft) // 0

0 0

,

so H1(f ′;M) = 0.
To prove the second statement, we again use induction, noting that we have already shown the

base case. For the short exact sequences above, we get

Hi(f
′;M)

ft Hi(f
′;M)

= 0

for i > 0. The koszul homology modules are finitely generated, so NAK applies. Then Hi(f
′;M) = 0

for all i > 0. By induction hypothesis, this implies that f ′ is a regular sequence on M . Finally,
from the short exact sequences, we know that

annH0(f ′;M)(ft) = 0,

so ft is a regular element on M/(f ′)M , and f is a regular sequence on M .

Corollary 1.45. Let R be a local ring, M an R-module, and f a sequence of elements of R. The
complex K•(f ;R) is a free resolution of R/(f) if and only if f is a regular sequence. In this case,

Koszul homology agrees with Tor: TorRi (R/(f),M) ∼= Hi(f ;M), and Koszul cohomology agrees with

Ext: ExtiR(R/(f),M) ∼= H i(f ;M).

Remark 1.46. If φ : R→ S is a ring homomorphism, f a sequence of elements of R, and M is an
S-module, then K•(f ; φM) ∼= K•(φ(f);M), where φ(f) is the sequence of images of the f ’s under
φ, and φM is the R-module structure on M given by restriction of scalars. In particular,

H i(f ; φM) ∼= φ

(
H i(φ(f);M)

)
.

1.5 Worksheet on Cohen-Macaulay rings, and a bit more Koszul
homology

1) Let R be a ring, f1, . . . , ft ∈ R, and M be an R-module. Let S = R[x1, . . . , xt]. Then R has
two different S-module structures, given by ϕ : S −→ R and ψ : S −→ R, where

ϕ(xi) = 0 for all i and ϕ|R = idR,

and
ψ(xi) = fi for all i and ψ|R = idR .

a) Show that x is a regular sequence on S, and conclude that K•(x) is a free resolution of ϕR
over S.

b) Prove that Hi(f ;M) ∼= TorSi (ϕR, ψM).

c) Use b) to show that (f) annihilates each Hi(f ;M).
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d) If x is a nonzerodivisor on M , there is a short exact sequence of complexes

0 // K•(f ;M)
·x // K•(f ;M) // K•(f ;M/xM) // 0 .

e) Show that, ifR is noetherian andM finitely generated, depth(f)(M) = min
{
i | Hi(f ;M) 6= 0

}
.

Definition 1.47 (Cohen-Macaulay local ring). A local ring (R,m, k) is Cohen-Macaulay if
depthR = dimR. That is, R is Cohen-Macaulay if there exists a regular sequence of length dim(R)
in m.

2. (a) Show that if f1, . . . , ft is a regular sequence, then ht(f1, . . . , ft) = t. Thus, (R,m) is
Cohen-Macaulay if and only if there exists a system of parameters that is a regular
sequence.

(b) Give a one line argument that if M is finitely generated and R is local, and f1, . . . , ft is
an M -sequence, then fσ(1), . . . , fσ(t) is a regular sequence for any permutation σ ∈ St.

(c) Give a one line argument to show that if M is finitely generated and R is local,
and f1, . . . , ft is an M -sequence, then fa1

1 , . . . , fatt for any ai > 0. Conclude that
depthI(M) = depth√I(M) for all I.

(d) Use the previous part and the conclusion of 1(e) to show that if (R,m) is Cohen-
Macaulay, then every system of parameters for R is a regular sequence.

3. a) If R = k[x] is a polynomial ring over a field k and m = (x), then Rm is Cohen-Macaulay.

b) If R is Cohen-Macaulay and f is a regular sequence on R, then R/(f) is Cohen-Macaulay.

c) Show that R =
(
k[x,y]

(x2,xy)

)
(x,y)

and S = k[x4, x3y, xy3, y4](x4,x3y,xy3,y4) ⊆ k[x, y](x,y) are not

Cohen-Macaulay rings.1

4. Recall that if p is a prime of height i in a local ring R, there exist f1, . . . , fi ∈ p and
gi+1, . . . , gd ∈ R such that f, g is a system of parameters for R. In particular, the images of
f form a system of parameters for Rp.

a) Prove that depthp(R) = ht p if R is Cohen-Macaulay.

b) Prove that if R is Cohen-Macaulay, then Rp is Cohen-Macaulay for p ∈ Spec(R).

Definition 1.48 (Cohen-Macaulay ring). A (not necessarily local) ring R is Cohen-Macaulay if
the following equivalent conditions hold:

• Rm is Cohen-Macaulay for all maximal ideals m.

• Rp is Cohen-Macaulay for all prime ideals p.

1Hint: x4 · (xy3)2 = (x3y)2 · y4 ∈ (y4).
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5. Assume for now the following:

Lemma: If R is local, depth(R) ≤ dim(R/p) for all p ∈ Ass(R).

(a) Prove that if R is local and Cohen-Macaulay, then dim(R) = dim(R/p) for all p ∈
Ass(R).

(b) Show that if R is Cohen-Macaulay, R has no embedded primes.

(c) Prove that if R is Cohen-Macaulay and f = f1, . . . , ft is a regular sequence, then every
associated prime of (f) has height t. In particular, the ideal (f) has no embedded primes.

(d) Prove the lemma above2, or look it up in Bruns & Herzog or Matsumura.

6. Show that

R =

k

[
u v w
x y z

]
(uy − vx, uz − wx, vz − wy)

is Cohen-Macaulay, and that

S = k

[
ar as at
br bs bt

]
⊆ k[a, b, r, s, t]

(r3 + sr + t3)

is not Cohen-Macaulay.

7. To what extent does H i(f) depend on the sequence of elements f rather than the ideal I = (f)
they generate?3

1.6 Auslander, Buchsbaum, and Serre

Definition 1.49 (Minimal free resolution). A minimal free resolution of a finitely generated
module M over a local ring (R,m, k) is a free resolution F• −→ M such that the image of each

Fi
δi // Fi−1 is contained in mFi−1. Equivalently, if we fix bases for each Fi and write the maps

δi in terms of matrices, every entry of such a matrix is in m.

Minimal free resolutions exist.

Lemma 1.50. Every finitely generated R-module over a local ring (R,m, k) has a minimal free
resolution.

2One approach is to prove first that ExtiR(N,M) = 0 for M,N finitely generated, R local, and i < depth(M) −
dim(N) by induction on dim(N). To deal with the base and induction cases, filter N by prime cyclic modules.

3It’s actually not that much! Try to see what you get if you throw in one redundant element for starters.
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Proof. Take a basis {mi}ni=1 for M/mM and map F0 =
⊕n

i=1Rei onto M by ei
� // mi . The

kernel K of this map lies in mF0.

F1

��

// F0( //M) // 0

K

AA

Repeat.

Moreover, the ranks of the Fi in a minimal free resolution of M are well-defined:

· · · // F2
α2 // F1

α1 // F0( //M) // 0

Since αi ⊗ k = 0, then

TorRi (M,k) = Hi

(
· · · // F2 ⊗ k 0 // F1 ⊗ k 0 // F0 ⊗ k // 0

)
= kβi ,

where βi = dimk(Fi). These numbers βi are called the betti numbers of M .
If P• is any projective resolution of M , the length of P• is > max {i |βi(M) 6= 0}. Otherwise,

Hi(P• ⊗ k) = TorRi (M,k) would vanish. The length of a minimal projective resolution of M , or
max {i |βi(M) 6= 0}, is called the projective dimension of M , and denoted pdR(M).

It turns out that the minimal resolution of M is a direct summand of any projective resolution
of M , but we will not need that.

Remark 1.51. For any finitely generated module M over a local ring (R,m, k), pdM 6 pd k,
since we can compute βi(M) = Tori(M,k) from a minimal projective resolution of k.

Lemma 1.52 (Depth Lemma). Let R be a noetherian local ring. Consider a short exact sequence
of finitely generated R-modules:

0 // A // B // C // 0 .

Then:

1) depth(A) > min {depth(B),depth(C) + 1}.

2) depth(B) > min {depth(A),depth(C)}.

3) depth(C) > min {depth(A)− 1,depth(B)}.

Theorem 1.53 (Auslander–Buchsbaum formula). Let (R,m, k) be a local ring, and M a finitely
generated module with pd(M) <∞. Then

pdR(M) + depth(M) = depth(R).

Proof. By induction of pdR(M).
If pdR(M) = 0, then M is free, so depth(M) = depth(R). If pdR(M) = 1, then a minimal free

resolution of M looks like
0 // Rs

α // Rt //M // 0 .

Then the corresponding long exact sequence on Ext•R(k,−) looks like

· · · // ExtiR(k,Rs)
ExtiR(k,α)

// ExtiR(k,Rt) // ExtiR(k,M) // · · · .
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Claim. ExtiR(k, α) = 0.

To see that, notice that given an injective resolution of R, say

0 // R // · · · // Q // · · ·
i

,

then
0 // Rs // · · · // ⊕sQ // · · ·

and
0 // Rt // · · · // ⊕tQ // · · ·

are injective resolutions of Rs and Rt, respectively. Then

ExtiR(k, α) = HomR (k,Qs)
α // HomR

(
k,Qt

)
= 0,

since α has entries in m.
Then we get short exact sequences

0 // ExtiR(k,R)t // ExtiR(k,M) // Exti+1
R (k,R)s // 0 ,

From which depthM = depthR− 1.
For pd(M) > 2, there is a short exact sequence

0 //M ′ // Rn //M // 0 .

Using the Depth Lemma (??), we finish by showing that depth(M ′) = depth(M) + 1.

Definition 1.54 (Regular local ring). A local ring (R,m, k) is regular if dimR = dimk m/m
2.

In other words, a minimal generating set for for m forms a system of parameters for R.

Geometrically, regular local rings correspond to smooth points: if (R,m, k) is the local ring of
a point on a variety, the vector space m/m2 corresponds to the dual of the tangent space at that
point. Regularity is the condition that the tangent space has the same dimension as the variety.

Example 1.55. If R = K[x](x) for a field K, then R is regular.

Example 1.56.

R =

k

[
u v w
x y z

]
(uy − vx, uz − wx, vz − wy)

m =
(u, v, w, x, y, z)

(uy − vx, uz − wx, vz − wy)

The local ring Rm is not a regular ring, since u, v, w, x, y, z are linearly independent in m/m2.
However, Rn is regular for

n =
(u− 1, v, w, x, y, z)

(uy − vx, uz − wx, vz − wy)
.

In fact, y ∈ (vx), z ∈ (wx), so nRn = (u− 1, v, w, x).
Finally, for the prime ideal p = (v, w, x, y, z), Rp is regular with pRp = (v, w, x).

Lemma 1.57. A regular local ring is a domain.
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Proof. By induction on d = dimR, where R is a regular local ring. If d = 0, then R must be a
field, and thus a domain.

If d > 0, consider x ∈ m \
(
m2 ∪

⋃
p∈MinR p

)
. (Here we are using the strong version of prime

avoidance where we can avoid one arbitrary ideal and a finite number of prime ideals.) By NAK,
m/xR is generated by d− 1 elements, so that dimR/xR 6 d− 1 by Krull’s Height Theorem. Then
dimR/xR = d− 1. By Induction Hypothesis, R/xR is a domain, and thus xR is a prime ideal in
R, which is not minimal. Given a prime ideal 0 ⊆ p ⊆ xR, if y ∈ p, we can write y = ax for some
a ∈ R, and if x /∈ p, then a ∈ p. Thus xp = p, which by NAK implies that p = 0. Thus R is a
domain.

Proposition 1.58. Let (R,m) be a local ring.

1) If (R,m) is a regular local ring, x ∈ m \m2, then R/xR is a regular ring.

2) If R/xR is a regular ring for some x that is a nonzerodivisor on R, then R is a regular ring.

3) Every regular local ring is Cohen-Macaulay.

Proof.

1) If R has dimension d, then mR/xR is generated by d− 1 elements and dimR/xR = d− 1.

2) Since x is not in any minimal prime of R, dimR = dimR/xR+ 1. Given x1, . . . , xd−1 ∈ R such
that mR/xR = (x1, . . . , xd−1), m = (x1, . . . , xd−1, x). Since m has height d, it must be generated
by at least d elements, and thus it is generated by exactly d elements, and R is regular.

3) Every minimal generating set for m/m2 forms a prime sequence.

Lemma 1.59. Let (R,m) be a local ring, M a finitely generated R-module, and x ∈ m a nonzero-
divisor on R and on m. Then

pdR/xRM/xM = pdRM.

Proof. We will show that R/xR⊗R F• is exact whenever F• −→M is a minimal free resolution of
M . Therefore, R/xR⊗R F• must be a resolution of M/xM . Indeed, the homology of F• −→M is

TorR• (R/xR,M) = H•

(
0 //M

x //M // 0
)
,

which vanishes in all positive degrees, and which is M/xM in degree 0.

Moreover, if F• is a minimal resolution then so is R/xR ⊗R F•, since elements in m are sent
into mR/xR by −⊗R/xR.

Theorem 1.60 (Auslander-Buchsbaum-Serre). Let (R,m, k) be a local ring. The following are
equivalent:

1) R is regular.

2) pdR(M) <∞ for all finitely generated R-modules M .

3) pdR(k) <∞
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Proof. Clearly, 2) ⇒ 3), and 1) ⇒ 2) follows once we show that 1) implies pd k < ∞, since
pdM 6 pd k for all finitely generated R-modules M . Indeed, the minimal generators of m form
a prime sequence, hence a regular sequence, and thus the Koszul complex on a minimal set of
generators for m gives a finite projective resolution for k.

To show 3)⇒ 1), we proceed by induction on t = dimk m/m
2.

If t = 0, then R is a field, and thus regular.
If t > 0, note that if depth(R) = 0, then applying Auslander-Buchsbaum to pd(R) < ∞ gives

pd k = 0, so k is free and R must be a field, and thus regular. If we assume that depthR > 0, then
m /∈ Ass(R), so there exists some x ∈ m \ m2 ∪ Ass(R). Consider R = R/xR. It suffices to show
that

pdR(m/m2),

since that implies R is regular by induction hypothesis, and thus R must be regular by Lemma ??.
By Lemma ??, we know that pdR(m/xm) < ∞. We claim that the short exact sequence of

R-modules
0→ xR/xm→ m/xm→ m→ 0

splits. Indeed, the image of xR/xm → m/xm → m/m2 is nonzero, since x /∈ m2. Thus, the
composed map of R-modules R/m ∼= xR/xm→ m/xm→ m/m2 is injective; the source and target
are R/m-modules, and any injective map of modules over a field splits. Thus, the identity on
xR/xm factors through m/xm, establishing the claim.

Now, m is a direct summand of m/xm, so, by functoriality, TorRi (m, k) is a direct summand

of TorRi (m/xm, k) for each i. Since the latter vanishes for large i, the former does as well, so
pdR(k) <∞, as required.

One important consequence of the previous theorem is that the regularity property localizes.

Theorem 1.61. If (R,m, k) is a regular local ring, and p ∈ Spec(R), then Rp is regular.

Proof. The R-module R/p has a finite free resolution, by the previous theorem. Applying the
functor of localizing at p to the resolution gives a finite free resolution of the residue field Rp/pRp

of Rp as an Rp-module, so Rp is regular by the same theorem.

Definition 1.62. An arbitrary ring is a regular ring if for every p ∈ Spec(R), Rp is a regular local
ring.

This definition is consistent with the local definition by the preceding theorem. We note now
an important corollary of the Auslander-Buchsbaum and Auslander-Buchsbaum-Serre theorems.

Corollary 1.63. Let S be a local ring, and R be a regular local ring. Suppose that R ⊆ S is a
module-finite local inclusion. Then S is Cohen-Macaulay if and only if S is free as an R-module.

Proof. Since S is module-finite over R, a system of parameters for R is a system of parameters for S,
and hence S is Cohen-Macaulay if and only if its depth as an R-module is equal to dim(R) = dim(S).

By Theorem ??, since R is regular, S has finite projective dimension as an R-module. Then,
S is R-free if and only if it has projective dimension zero, which happens if and only if its depth
as an R-module is equal to the depth of R, by Theorem ??. Since R is Cohen-Macaulay, and
R ⊆ S is module-finite, depth(R) = dim(R) = dim(S). Thus, S is R-free if and only if it is
Cohen-Macaulay.

The previous corollary exhibits an important principle in Commutative Algebra: the qualitative
behavior of rings (e.g., Cohen-Macaulayness) is reflected in the module structure of rings over others
via restriction of scalars.
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1.7 Structure theorem of complete local rings

Definition 1.64. The (m-adic) completion of a local ring (R,m, k) is R̂ = lim←−R/m
tR. The com-

pletion of an R-module is M̂ = lim←−M/mtM . A local ring is complete if R ∼= R̂ via the natural
map.

While arbitrary local rings defy anything akin to a classification, there is a beautiful classification
for complete local rings.

First, we say that a local ring (R,m, k) has (equal) characteristic zero if char(R) = char(k) = 0.
Likewise, (R,m, k) has (equal) characteristic p if char(R) = char(k) = p. (R,m, k) has mixed
characteristic (0, p) if char(R) = 0 and char(k) = p > 0. We note that for a local ring, these
combinations of characteristics (where p is always a prime) are the only possibilities, and that R
has equal characteristic if and only if it contains a field.

Theorem 1.65 (Cohen structure theorem). Let (R,m, k) be a complete local ring.

1. One can write R ∼= AJxK/I, where

• A ∼= K, a field, if R has equal characteristic, or

• A ∼= V , a complete DVR with uniformizer p if R has mixed characteristic.

That is, every complete local ring is a quotient of a power series ring.

2. R is regular if and only if

• R ∼= KJxK in equal characteristic, or

• either R ∼= V JxK or R ∼= V JxK/(p− f) with f ∈ m2 in mixed characteristic.

3. There exists a power series ring S = KJyK or S = V JyK such that S ⊆ R is module-finite.

4. If R has equal characteristic, there exists a subfield K ⊆ R such that the composition K ⊆
R → k is an isomorphism. Such a K is called a coefficient field for R. In (1)–(3), one can
choose a coefficient field for the stated K.

It is often helpful to complete R, and use this wonderful structure theorem. In general, the
completion map R→ R̂ is faithfully flat, which allows one to descend many useful conclusions about
R̂ to R. For example, you are encouraged to prove now that R is regular (resp. Cohen-Macaulay)
if and only if R̂ is.
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Injective modules

At this point, we have a pretty concrete idea of what free resolutions look like. For finitely-generated
modules, the modules in a free resolution are the simplest modules to describe, free modules with
finite rank. To specify a free resolution, we just need to give a bunch of matrices. Furthermore,
we know that these all have finite (homological) length over regular rings, and what exactly this
length is. At first glance, describing an injective resolution is a much more daunting task: injective
modules are rarely finitely generated, so just getting started writing an injective resolution is a more
daunting task. We will see that there is great finiteness in the structure of injective resolutions.
We will also see that even though these modules aren’t finitely generated, we can get a relative
concrete understanding of them.

2.1 Injective modules and essential extensions

Definition 2.1. An R-module E is injective if, for any inclusion of R-modules A ⊆ B, and any
homomorphism ϕ : A→ E, one can extend ϕ to a map ϕ′ : B → E. Equivalently, E is injective if
any one-to-one1 map A→ B induces a surjection HomR(B,E)→ HomR(A,E).

If E is injective, then HomR(−, E) is an exact functor: given a short exact sequence 0→ A→
B → C → 0, the sequence

0→ HomR(C,E)→ HomR(B,E)→ HomR(A,E)→ 0

is exact at every spot except possibly at HomR(A,E), since this always holds for the “Hom into”
functor, and is also exact at HomR(A,E) by the definition of injective.

A useful fact is that, instead of checking arbitrary inclusions in the definition above, it suffices
to check inclusions of an ideal into the ring.

Proposition 2.2 (Baer’s criterion). Let R be a ring, and E be a module. The module E is injective
if and only if, for any ideal a ⊆ R, and any homomorphism ϕ : a→ E, one can extend ϕ to a map
ϕ′ : R→ E.

Proof. Exercise.

Definition 2.3. An R-module M is divisible if, for any m ∈M and any r ∈ R, there is an m′ ∈M
such that rm′ = m.

1The class of modules we are defining of course shares a name with the property of maps that characterizes
monomorphisms. We will try to stick to the term “one-to-one” to refer to injective maps in our discussion of the
basics of injectives.

27
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Note that if R is local, and M is a nonzero divisible module, then M is not finitely generated,
by NAK.

Proposition 2.4. Let R be a domain. If M is an injective R-module, then M is divisible. If R
is a PID, and M is a divisible R-module, then M is injective.

Proof. By Baer’s criterion, it suffices to note that M is divisible if and only any map ϕ : rR→M
from a principal ideal to M extends to a map ϕ′ : R→M . To see this, note that any ϕ : rR→M
is of the form ϕm(rs) = sm for some m (and for any m, the map ϕm is well-defined; contrast this
with Example ??); any map from R → M is of the form ψm′(s) = sm′ for some m′; such a ψm′

extends ϕm if and only if m = rm′.

Example 2.5.
0(→ Z)→ Q→ Q/Z→ 0

is an injective resolution of Z as a Z-module.

Exercise 2.6. Use the definition of local cohomology to compute Hi
(n)(Z) for all n, i. Then, find

an injective resolution of Z/pZ as a Z-module, and compute Hi
(n)(Z/pZ) for all n, i.

The hypothesis that R is a domain is necessary in Propositon ??:

Example 2.7. Let R = K[x](x)/(x
2). We claim that R is an injective R-module. By Baer’s

criterion, we need to check that any map xR → R extends to a map R → R. Since xR ∼= R/x,
any map xR → R is of the form ϕ(xs) = sy, with xy = 0. But, y ∈ annR(x) = (x), so we have
ϕ(xs) = s(xy′), so ψ(s) = sy′ extends ϕ. Of course, R is not a divisible R-module: 1 is not a
multiple of x.

Proposition 2.8 (Hom-tensor adjunction). Let R → S be a map of rings, A,B two S-modules,
and C an R-module. Then there are isomorphisms

HomR(A⊗S B,C) ∼= HomS(A,HomR(B,C))

that are functorial in each argument; we interpret each S-module as an R-module via restriction of
scalars to compute R-linear Hom modules. These isomorphisms are functorial in each argument,
and compatible with each of the R and S structures induced by A, B, and C.

Lemma 2.9. Let R→ S be a map of rings. Let F be a flat S-module (e.g., S itself), and E be an
injective R-module. Then HomR(F,E) is an injective S-module.

Proof. By Hom-tensor adjunction, there is an isomorphism of functors

HomS(−,HomR(F,E)) ∼= HomR(F ⊗S −, E).

The latter is a composition of two exact functors (tensor with a flat module, hom into an injective
module), so it is exact.

Proposition 2.10. Every R-module embeds into an injective R-module.

Proof. Exercise. Suggestion: Let (−)∨ = HomZ(−,Q/Z), and show that the map “evaluate at”:
M →M∨∨ is injective; map a free R-module onto M∨ and apply ∨ to that R-module surjection.

Proposition 2.11. Let θ : M → N be a one-to-one map of R-modules. The following are equiva-
lent:
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1. For any map α : N → L, α ◦ θ is one-to-one ⇒ α is one-to-one. In particular, if M ⊆ N ,
then α|M is one-to-one ⇒ α is one-to-one.

2. Every nonzero submodule of N has a nonzero intersection with θ(M).

3. Every nonzero element of N has a nonzero multiple in θ(M).

Proof. (1)⇒ (2): If N ′ ⊆ N is nonzero, then α : N → N/N ′ is not one-to-one, hence α ◦ θ : M →
N/N ′ is not either, so M ∩N ′ 6= 0.

(2)⇒ (3): This is the special case of a cyclic submodule.

(3)⇒ (1): Given a nonzero element in n ∈ ker(α), n has a nonzero multiple in θ(M), and any
multiple of n is still in the kernel of α.

Definition 2.12. A map θ that satisfies the equivalent conditions above is called an essential
extension. We will often say that one module is an essential extension of another, meaning that
the latter is a submodule, and the inclusion map is essential.

Roughly, one can think of A ⊆ B is an essential extension as being something like a dual
property to A being a generating set for B (even though generating sets aren’t modules). If A ⊆ B
is essential, then anything in B can get multiplied back into A, whereas if A is a generating set for
B, anything in B can be obtained by multiplying from elements in A (and adding).

Example 2.13. If W is a multiplicative set consisting of nonzerodivisors on M , then W−1M is an
essential extension of M . In particular, the fraction field of a domain is an essential extension of it.

Example 2.14. If M is a (nonzero) I-torsion module, that is, every element of M is killed by a
power of I, then annM (I) ⊆M is an essential extension.

In particular, if (R,m) is local and M is m-torsion, annM (m) is called the socle of M ; M is an
essential extension of its socle.

Proof. Given m ∈ M , we have that Ass(Rm) ⊆ Ass(M).2 Since M is I-torsion, Ass(M) ⊆ V (I).
Let p ∈ Ass(Rm), and x ∈ Rm such that ann(x) = p. Then x is a nonzero multiple of m that is
killed by I.

Proposition 2.15. Let L ⊆M ⊆ N be R-modules.

1. L ⊆ N is essential if and only if L ⊆M and M ⊆ N are essential.

2. If M ⊆ Ni ⊆ N and N =
⋃
Ni, then M ⊆ N is essential if and only if each M ⊆ Ni is

essential.

3. There is a unique N ′ such that M ⊆ N ′ ⊆ N that is maximal with respect to the property
that M ⊆ N ′ is essential.

Definition 2.16. A module N ′ as in (3) above is called a maximal essential extension of M in N .
If M ⊆ N is essential, and N has no proper essential extensions, then we say that N is a maximal
essential extension of M .

2For a not-necessarily-finitely-generated module M , Ass(M) is the set of primes q such that R/q embeds into M .
Any nonzero module has an associated prime: this reduces to the finitely generated case by considering a nonzero
finitely generated submodule.
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Beware that there are two notions of maximal essential extension above: a relative version that
takes place inside another module, and an absolute version.

Proposition 2.17. Let M be an R-module. The following are equivalent:

1. M is an injective module

2. every one-to-one map M → N splits

3. M has no proper essential extensions

In particular, any maximal essential extension in the absolute sense is an injective module.

Proof. (1) ⇒ (2): The identity map M → M extends to a map N → M by the definition of
injective.

(2)⇒ (3): It suffices to note that M ⊆M⊕M ′ is not essential: (0,m′) has no nonzero multiple
in (the image of) M .

(3)⇒ (1): EmbedM in an injective module, E. By Zorn’s lemma, there is a maximal submodule
N of E such that M ∩N = 0. Then, M → E/N is essential, and by hypothesis, an isomorphism.
Then, E = M + N = M ⊕ N . Since M is a direct summand of an injective module, M is
injective.

Proposition 2.18. Let M be an R-module. If E is an injective module with M ⊆ E, then the
maximal essential extension of M in E is an injective module. All maximal essential extensions of
M are isomorphic.

Proof. Let E′ be a maximal essential extension of M in E, and Q be an essential extension of E′

(possibly not in E). Since E is injective, the inclusion of E′ ⊆ E extends to a map from Q → E.
Since E′ → E was one-to-one, and E′ → Q essential, Q to E is one-to-one. By definition of E′, we
have E′ = Q. Thus, E′ is an absolute maximal essential extension of M , hence an injective module.

Let E′ and E′′ be two maximal essential extensions of M . The map from M → E′′ extends to a
map ϕ : E′ → E′′. Since E′ is an essential extension of M and M → E′′ is one-to-one, ϕ : E′ → E′′

is one-to-one. Since E′ is injective, E′′ = ϕ(E′) ⊕ C for some C. Since ϕ(E′) → E′′ is essential,
C = 0.

Definition 2.19. An injective hull or injective envelope of an R-module M is a maximal essential
extension of M . By the previous proposition, this is well-defined up to isomorphism. We write
ER(M) for an injective hull of M .

Definition 2.20. A minimal injective resolution of an R-module M is an injective resolution
M → E• of M in which E0 = ER(M), and Ei = ER(coker(∂iE•)) for each i > 0.

Example 2.21.

0(→ Z)→ Q→ Q/Z→ 0

is a minimal injective resolution of Z as a Z-module.
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2.2 Injective modules over noetherian rings

So far, our observations on injectives are very general. For noetherian rings, there is a beautiful
structure theory of injective modules due to Bass. To prepare for the first step, we note:

Lemma 2.22. If M is a finitely generated R-module, and {Ni}i∈I is an arbitrary family of R-
modules, then

HomR(M,
⊕
i∈I

Ni) ∼=
⊕
i∈I

HomR(M,Ni).

If N0 ⊆ N1 ⊆ N2 ⊆ · · · , then

HomR(M,
⋃
i∈N

Ni) ∼=
⋃
i∈N

HomR(M,Ni).

Proof. Exercise.

Proposition 2.23. If R is noetherian, then every direct sum of injective R-modules is injective.

Proof. Let {Ei}i∈I be a family of injective modules. For an ideal a and any i, HomR(R,Ei) →
HomR(a, Ei) is surjective. Applying the previous lemma and the hypothesis that a is finitely
generated, the composition

HomR(R,
⊕
i∈I

Ei) ∼=
⊕
i∈I

HomR(R,Ei)→
⊕
i∈I

HomR(a, Ei) ∼= HomR(a,
⊕
i∈I

Ei)

is surjective. By Baer’s criterion,
⊕

i∈I Ei is injective.

Evidently, the injective hulls of prime cyclic modules, ER(R/p), are injective modules. They
will be the building blocks in the structure theory. Both to that end and for our purposes later, we
will want to understand their structure. We collect some of their key properties here.

Before we do this, we recall some facts about modules that are not necessarily finitely generated.
Recall that p is an associated prime of a module M if there is an embedding R/p ↪→ M ; we

write Ass(M) for the set of associated primes of M . For a general module,

• Ass(M) need not be finite, and

•
⋂

p∈Ass(M) p does not necessarily agree with
√

annR(M).

However, M ⊆ N implies Ass(M) ⊆ Ass(N), and if R is noetherian,

• if M 6= 0, then Ass(M) 6= ∅, and

• Supp(M) = {q ∈ Spec(R) | q ⊇ p for some p ∈ Ass(M)}.

Proof. For the first, take some nonzero m ∈M ; ∅ 6= Ass(Rm) ⊆ Ass(M). For the second, we note
that (R/p)q 6= 0 if q ⊆ p, which yields “⊇,” and if x/1 6= 0 in Mq, then q must contain an associated
prime of Rx, which is an associated prime of M .

A module M is I-torsion if for every m ∈M , ∃N such that INm = 0. This does not necessarily
imply that there is some N such that INM = 0. If R is noetherian and I = (f1, . . . , ft) then the
following are equivalent:

• M is I-torsion;



32 CHAPTER 2. INJECTIVE MODULES

• ∀m ∈M , there is an N such that fNi m = 0 for all i;

• ∀p ∈ Ass(M), p ⊇ I.

Proof. For the equivalence of the first two, we note that INt ⊆ (fN1 , . . . , f
N
t ) ⊆ IN , so a large power

of I kills an element iff large powers of each fi do. This uses finite generation in a crucial way.
The first implies the third since I contains a nonzerodivisor on the domain R/q, and any power of
this element does not kill the generator of R/q. The third implies the first, since, for each x ∈M ,
the associated primes of the cyclic module Rx all are contained in I, so

√
ann(x) =

⋂
p∈Ass(Rx) p ⊆

I.

Lemma 2.24. If M ⊆ N is an essential extension, then Ass(M) = Ass(N).

Proof. We only need to see that an associated prime of N is also associated to M . If x generates
a cyclic submodule of N isomorphic to R/p, then any nonzero multiple of x does as well; since x
has a nonzero multiple in M , we are done.

Theorem 2.25. Let p be a prime in a noetherian ring R. Let κ be the fraction field of R/p
(equivalently, the residue field of Rp.) Let E = ER(R/p) be an injective hull for R/p.

1. If x ∈ R \ p, then E
x→ E is an isomorphism, hence E = Ep.

2. annE(p) = κ.

3. κ ⊆ E is an essential extension of Rp-modules and E is an injective hull of κ as an Rp-module.

4. E is p-torsion, and Ass(E) = {p}.

5. HomRp(κ,E) ∼= κ and HomRp(κ,ER(R/q)p) = 0 for another prime q 6= p.

Proof. 4. This is immediate from the previous lemma and the discussion above it.

1. By Example ??, R/p ⊆ κ is an essential extension, so E must contain a copy of κ; we identify
κ with its isomorphic copy in E: R/p ⊆ κ ⊆ E are all essential. Since multiplication by x
is one-to-one on κ, it must be one-to-one on its essential extension E. Then, the submodule
xE ∼= E is injective, so a direct summand of E. But, since κ ⊆ xE ⊆ E is essential, E cannot
decompose as a nontrivial direct sum, so xE = E.

2. By part (1), annE(p) = annE(pRp) is a κ-vector space, and contains the copy of κ we found
earlier, so κ ⊆ annE(p) splits. Since the extensions κ ⊆ annE(p) ⊆ E are essential, annE(p)
cannot decompose as a nontrivial direct sum of κ-vector spaces.

3. Since κ ⊆ E is essential as R-modules, it is clearly essential as Rp-modules. (Any nonzero
element has a nonzero R-multiple, hence a nonzero Rp-multiple in the submodule.) To see
that E is a maximal essential extension of κ as an Rp-module, let E ⊆ M be an essential
extension of Rp-modules. For any nonzero m ∈M , there is some nonzero multiple (r/s)m in
E, with s /∈ p. Then rm is a nonzero multiple of m in E, so E ⊆M is an essential extension
as R-modules, so M = E.

5. We recall that HomRp(Rp/pRp,M) can be identified with the submodule of M consisting of
elements killed by pRp.

Then, the first isomorphism follows from part (2) applied in Rp.
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Set E′ = ER(R/q). By (4), E′p 6= 0 only if q ⊆ p. By (1), E′p = ERp(Rp/qRp), which by (4)
has qRp as its only associated prime; in particular, no element is killed by pRp, so the hom is
zero.

We can now prove the structure theorem for injective modules.

Theorem 2.26. Let R be a noetherian ring and E an injective R-module. There is a direct sum
decomposition

E ∼=
⊕

p∈Spec(R)

ER(R/p)µp ,

and the multiplicities µp are uniquely determined by the formula µp = dimκ(p) HomRp(κ(p), Ep),
where κ(p) = Rp/pRp.

Proof. By Zorn’s lemma, there is a submodule E′ (not a priori nonzero) of E that is

• isomorphic to a direct sum of injective hulls of prime cyclic modules: E′ ∼= ⊕pER(R/p)ηp ,

• and no other submodule of E contains E′ and admits a decomposition of this form.

By Proposition ??, E′ is injective, so we can write E = E′ ⊕ C for some C. If E′′ 6= 0, take
p ∈ Ass(E′′). The inclusion map R/p → E′′ extends along the inclusion R/p ⊆ ER(R/p) to
a map ER(R/p) since E′′ is injective; since the inclusion is essential, ER(R/p) embeds into E′′.
Since ER(R/p) is injective, it splits from E′′, and we contradict the maximality of E′. Thus, a
decomposition as promised exists. Given such a decomposition, the formulas for µ(p) follow from
part (5) of the previous theorem.

Thus, injective modules are uniquely determined by a multiplicity for each prime. This struc-
tural data, for the modules appearing in a minimal injective resolution of a module, are called Bass
numbers.

Definition 2.27 (Bass numbers). Let R be a noetherian ring, and M an R-module. Given a
minimal injective resolution

0→ (M →)E0 → E1 → E2 → · · ·

and decompositions

Ei ∼=
⊕

p∈Spec(R)

ER(R/p)µ(i,p),

we call µ(i, p) the i-th Bass number of M with respect to p.

Theorem 2.28. Let R be a noetherian ring, and M an R-module. The Bass numbers of M can
be computed as

µ(i, p) = dimκ(p) ExtiRp
(κ(p),Mp) where κ(p) = Rp/pRp.

Proof. Given a minimal injective resolution

0→ (M →)E0 → E1 → E2 → · · ·

we leave it as an exercise to check that

0→ (Mp →)E0
p → E1

p → E2
p → · · ·
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is a minimal injective resolution of Mp as an Rp-module, and that the number of copies of ER(R/p)
in Ei is the same as the number of copies of ER(R/p) in Eip. We compute the Ext modules in the
statement from the latter injective resolution:

ExtiRp
(κ(p),M) = H i

(
0→ HomRp(κ(p), E0

p )→ HomRp(κ(p), E1
p )→ HomRp(κ(p), E2

p )→ · · ·
)
.

Claim. The differentials in the complex above are zero.

We need to show that for any Rp-linear α : κ(p) → Eip, the composition δi ◦ α : κ(p) → Ei+1
p

is the zero map. Let x ∈ κ(p), and suppose that α(x) 6= 0 in Eip. The minimality of the injective
resolution implies that α(x) has a nonzero multiple in the image of δi−1. Since κ is a field, this
implies that α(x) is in the image of δi−1, and hence in the kernel of δi, establishing the claim.

The proof of the theorem is now immediate, since the homology of the complex in the i-th spot
is HomRp(κ(p), Eip), which, by the previous theorem, is a κ(p)-vector space of rank µ(i, p).

Corollary 2.29. If R is noetherian, and M is a finitely generated R-module, all of the Bass
numbers of M are finite.

Proof. We can compute µ(i, p) by taking a minimal free resolution of κ(p), applying HomRp(−,Mp),
and computing homology. The complex we obtain consists of finitely generated modules, so its
homology modules are finitely generated modules.

Example 2.30. Let’s compute the Bass numbers of Z as a Z-module. We claim that

Q/Z ∼=
⊕

p prime

Z[1/p]/Z ∼=
⊕

p∈Spec(Z)\{(0)}

EZ(Z/pZ).

To see the first isomorphism, consider an element [m/n] ∈ Q/Z with m/n in lowest terms. We
want to see that [m/n] has a unique expression as a sum of elements of Z[1/p]/Z. We can discard
any terms with denominators q not dividing n, since (1/q ·Z)∩ (1/n ·Z) = Z. Write n = pe11 · · · penn .
Then, by the Chinese remainder theorem

m

n
≡
∑
i

ai
peii

(mod 1) ⇐⇒

m ≡
∑
i

aip
e1
1 · · · p̂

ei
i · · · p

en
n (mod n) ⇐⇒


m ≡ a1p̂

e1
1 · · · p

ei
i · · · penn (mod pe11 )

...
...

...

m ≡ anpe11 · · · p
ei
i · · · p̂

en
n (mod penn ).

In each of these congruence equations, the product of prime powers on the RHS is a unit, so we
can solve uniquely for each ai mod peii ; that is, each [ai/p

ei
i ] ∈ Z[1/p]/Z is uniquely determined.

This establishes the first isomorphism.
For the second, it suffices to note that Z[1/p]/Z is divisible (check it!), that it is p-torsion (clear),

and that the annihilator of p in this module is isomorphic to Z/pZ. From these observations, we
see that the module is injective by Proposition ??, and that it is an essential extension of Z/pZ by
Example ??.

We conclude that the Bass numbers of Z are

µ(0, p) =

{
1 if p = (0)

0 if p = (p) 6= (0)
and µ(1, p) =

{
0 if p = (0)

1 if p = (p) 6= (0).
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Each Bass number here is either 0 or 1. We caution that the “total first Bass number,” the sum
of the first Bass numbers, is infinite.

We note also that this 116esque game of writing a fraction as a sum of fractions with pure-power
denominators is very closely related to the calculation of local cohomology.

We now know that the indecomposable injectives of a noetherian ring are all of the form
ER(R/p), that every injective is (in a unique way) a direct sum of these, and finitely generated mod-
ules all have injective resolutions in which each injective has a finite number of copies of ER(R/p)
in its direct sum decomposition. We also know many of the key structural properties of ER(R/p),
as collected in Theorem ??.

We will want to have a better understanding of ER(k) for the residue field of a local ring in order
to the develop the duality theory hinted at on the first day of class. We note that this encompasses
any indecomposable injective ES(S/p): by part (3) of Theorem ??, ES(S/p) = ER(k) for R = Sp
and k the residue field of R. We will pursue this with a little bit of redundancy. First, we will
discuss a model for ER(k) when R has a coefficient field (e.g., when R is complete) and the Matlis
duality functor in that setting. Then, we will develop the duality theory in full generality.

2.3 Worksheet on Matlis duality and ER(k) for rings with coeffi-
cient fields

Throughout this section/worksheet, (R,m) will denote a local or graded noetherian ring with coef-
ficient field k, so that the composition k ↪→ R→ R/m is an isomorphism.

Definition 2.31. For an R-module M , the m-adically continuous k-linear homomorphisms from
M to k are

Homm−cts
k (M,k) := lim−→Homk (M/mnM,k) .

We recall some facts about Hom and limits:

• Given a directed system (Mi)i∈N =
(
· · · //Mi

//Mi+1
// · · ·

)
,

HomR

(
lim−→Mi, N

) ∼= lim←−HomR (Mi, N) .

• If M is finitely presented and given a directed system (Ni)i∈N, then

HomR

(
M, lim−→Ni

) ∼= lim−→HomR (M,Ni) .

• In general, if (Mi)i∈N =
(
· · · //Mi

//Mi−1
// · · ·

)
is an inverse system,

HomR

(
lim←−Mi, N

)
6∼= lim−→HomR(Mi, N)

0) Check that if M is an R-module, then
(

Homk(M/mnM,k)
)
n∈N forms a directed system of

R-modules, so Homm−cts
k (M,k) is an R-module.3

1) a) Show that k ∼= HomR(R, k) ⊆ Homm−cts
k (R, k) is an essential extension.

3Yes, this is very quick.
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b) Show that if M is a finitely generated R-module, then

Homm−cts
k (M,k) ∼= HomR

(
M,Homm−cts

k (R, k)
)
.

c) Show that Homm−cts
k (R, k) is injective, and conclude that this is an injective hull of k.4

2) a) Let S = k [x1, . . . , xd], m = (x1, . . . , xd), T = Sm. Show that ET (k) has a basis given by

(xα)∗ =

{
xβ 7→ 1 β = α

xβ 7→ 0 β 6= α

with module structure given by

xγ · (xα)∗ =

{ (
xα−γ

)∗
αi > γi for all i

0 αi < γi for some i.

b) Compare ET (k) to the module described in the first lecture.

c) Consider T̂ = kJx1, . . . , xnK, the completion of T above. Show that E
T̂

(k) ∼= ET (k).

d) If R = ⊕i∈NRi is graded, R0 = k, and R is a finitely generated k-algebra, show that the
graded dual

R∗ =
⊕
i

R∗i , R∗i = Homk(Ri, k)

is an injective hull for k.

Definition 2.32. The Matlis duality functor is (−)∨ = HomR(−, ER(k)). Note that this is an
exact functor.

3. a) If M is a finitely generated R-module, show that M∨ ∼= Homm−cts
k (M,k).

b) If M is a module of finite length, show that M∨ ∼= Homk(M,k).

c) If M1 ⊆ M2 ⊆ M3 ⊆ · · · ⊆ M , each Mi is a finite length module, and M =
⋃
Mi, we say

that M is a union of finite length submodules. Show that if M is a union of finite length
submodules, then M∨ ∼= Homk(M,k).

d) Show that if M is finitely generated, then M∨ is a union of finite length submodules.

e) If M is a finitely generated R-module, show that M∨∨ ∼= M̂ . In particular, R∨∨ ∼= R̂.

4. a) Come up with explicit examples of Matlis duals of nonregular rings and nonfree modules.

b) Say R is complete. Our recipe for ER(k) looks canonical. Explain why it is not.

c) Show that the Matlis duality functor is faithful: if M 6= 0, then M∨ 6= 0.

d) Suppose R is a local ring containing a field, but that R does not have a coefficient field.
Explain how to give an explicit description of R∨ anyway.

e) Can you give a uniform description for the duality functor for all R-modules in our setting?

We note here a generalization of the definition we encountered above:

Definition 2.33. Let R be an A-algebra, J an ideal of R, M,N two R-modules. The J-adically
continuous A-linear homomorphisms from M to N are

HomJ−cts
A (M,N) := lim−→HomA (M/mnM,N) .

4Hint: Show that for any ideal I and any n, there exists N such that I/mN ∩ I // //� w

**
I/mnI

R/mN

.
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2.4 Matlis Duality

In the previous worksheet, we encountered the Matlis duality functor in a special setting. We define
it the same way in general.

Definition 2.34. Let (R,m, k)be a local ring. The Matlis duality functor is (−)∨ = HomR(−, ER(k)).

Based on the worksheet above, we expect this functor to behave like vector space duality
Homk(−, k). A more homological motivation for this functor is given by the fact hom into an
injective is exact, and the only indecomposable injective into which every module could admit a
nonzero map is ER(k).

Of course, we hope/expect this to be a duality in some sense. The following lemma gives a few
first ways in which this is true.

Lemma 2.35. Let (R,m, k) be a local ring and M be an R-module. Then

1. the natural map M →M∨∨ is injective,

2. `(M∨) = `(M), and

3. if `(M) <∞, then M ∼= M∨∨.

Proof. 1. For nonzero x ∈ M set L = Rx ⊆ M , and consider the composed map L→ L/mL ∼=
K → ER(k). This map extends to a homomorphism of R-modules ε : M → ER(k) with
ε(x) 6= 0.

2. First, we assume that `(M) is finite, and induce on length. Note that k is the only simple
module over R, and thus the subquotients in any decomposition series are isomorphic to k.
Therefore, if `(M) = 1, then M ∼= k, and the result follows from HomR(k,E(k)) ∼= k. When
`(M) > 2, the composition series of M gives an exact sequence

0 // L //M // k // 0 .

Since length is additive on exact sequences, `(L) = `(M) − 1. By induction hypothesis,
`(L∨) = `(L). On the other hand, since (−)∨ is an exact functor, applying (−)∨ to the short
exact sequence above yields a short exact sequence

0 // k //M∨ // L∨ // 0 .

By additivity of ` on this short exact sequence, `(M∨) = `(L∨)+1. Thus `(M∨) = `(L)+1 =
`(M).

3. From the first two parts, we have that M → M∨∨ is injective, and `(M) = `(M∨∨), so the
map must be surjective as well.

Remark 2.36. The natural map “evaluate at” from M to M∨∨ commmutes with double-duals:
given f : M → N , the diagram

M

nat
��

f // N

nat
��

M∨∨
f∨∨ // N∨∨

commutes.
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Our goal now is to bootstrap up this duality from the finite length case to local rings in general.
The following statement on compatibility of injective hulls will be the key.

Theorem 2.37. Let ϕ : (R,m, k) −→ (S, n, `) be a local homomorphism of local rings. If S is
module-finite over the image of R, then HomR(S,ER(k)) = ES(`).

Proof. We ahve that S/mS ∼= S ⊗R k has finite length, so mS is n-primary. Since some power of
n is contained in mS, and ER(k) is m-torsion, HomR(S,ER(k)) is n-torsion as an S-module. It
is also injective by Lemma ??. Thus, by the structure theorem, it is isomorphic to some num-
ber of copies of ES(`). We know that this number of copies is the `-vector space dimension of
HomS(`,HomR(S,ER(k))). Consider the isomorphisms

HomS(`,HomR(S,ER(k))) ∼= HomR(`⊗S S,ER(k))
∼= HomR(`⊗k k,ER(k))
∼= Homk(`,HomR(k,ER(k)))
∼= Homk(`, k).

The last hom module is a one-dimensional `-vector space, so HomR(S,ER(k)) ∼= ES(`).

Remark 2.38. Let (R,m, k) be a local ring. For each ideal I in R, the theorem above implies that
the injective hull of k over R/I is (0 :ER(k) I). In particular, since ER(k) is m-torsion, one has

ER(k) =
⋃
t

(0 :ER(k) m
t) =

⋃
t

ER/mt(k).

Remark 2.39. Let (R,m) is local, and M is an m-torsion R-module, then M is naturally a R̂-
module: if mnx = 0, and r̂ ∈ R̂, take some r ∈ R such that r − r̂ ∈ mn, and set r̂m = rm. One
sees easily that this action is well-defined, and additionally, that any R-linear endomorphism of M
is also an R̂-linear endomorphism.

Theorem 2.40. Let (R,m, k) be a local ring, R̂ its m-adic completion, and E = ER(k). Then,

1. E
R̂

(k) = E, and

2. there is an isomorphism of R̂-modules:

R̂ // R∨∨ = HomR(E,E)

r � // (e 7→ re)

.

Proof. The containment k ⊆ E is an essential extension of R-modules, and thus of R̂-modules as
well. Given an essential extension E ⊆ M of R̂-modules, M must be m-torsion, since it has the
same associated primes (just m). Therefore, Rm = R̂m for each m ∈M , which implies that E ⊆M
is also an essential extension of R-modules. Hence M = E, and we conclude that E = E

R̂
(k).

Since E is m-torsion, Hom
R̂

(E,E) = HomR(E,E), so we may assume that R̂ is complete for
the rest of the proof. Then, we can identify the given map R → R∨∨ with the natural map
r 7→ (φ 7→ φ(r)). Hence, this map is injective.

When R is artinian, `(R) <∞, so the map R→ R∨∨ is an isomorphism.
For each i > 1, set Ri := R/mi. The Ri-module Ei = (0 :E mi) is the injective hull of k

as an Ri-module. For each ϕ ∈ HomR(E,E), ϕ(Ei) ⊆ Ei, and thus ϕ restricts to an element of
HomRi(Ei, Ei) = Ri, where the equality holds because Ri is artinian. Consequently, ϕ restricted
to Ei is multiplication by an element ri ∈ Ri, with ri+1 − ri ∈ mi. Thus ϕ is multiplication by the
element lim←−i ri in R.
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Remark 2.41. We have a pretty concrete idea of what any injective module in any noetherian
ring looks like now. They are direct sums of modules ER(R/p) for primes p, and

ER(R/p) ∼= ERp(Rp/pRp) ∼= E
R̂p

(R̂p/pR̂p) ∼=

{
EKJxK/I(K) ∼= annI(EKJxK(K)) ∼= annI(K[x−1])

EV JxK/I(V/pV ) ∼= annI(EV JxK(V/pV )) ∼= annI(?),

where K[x−1] is the continuous hom module you described in the worksheet, and ? is the analogous
mixed characteristic thing you described in the homework. Note that K ∼= Rp/pRp.

Definition 2.42. An R-module M is artinian if every descending chain of submodules of M even-
tually stabilizes.

It is evident that submodules and quotient modules of artinian modules are also artinian. We
recall that artinian rings — rings that satisfy the DCC condition on ideals — are necessarily
noetherian, and hence have finite length. This is not true for modules.

Corollary 2.43. For a local ring (R,m, k), the module ER(k) is artinian.

Proof. Consider a chain of submodules ER(k) ⊇ E1 ⊇ E2 ⊇ · · · . Applying the functor (−)∨ yields
surjections

R̂ // // E∨1
// // E∨2

// // · · · .

The ideals ker( R̂ // // E∨i ) form an ascending chain of ideals, and thus stabilize. Thus E∨i
// // E∨i+1

is an isomorphism for i� 0. Since (−)∨ is faithful, it follows that Ei = Ei+1 for i� 0.

Theorem 2.44. Let (R,m, k) be a local ring and M be an R-module. The following conditions are
equivalent:

(1) M is m-torsion and the rank of the socle of M is finite.

(2) M is an essential extension of a k-vector space of finite rank.

(3) M can be embedded in a finite direct sum of copies of ER(k).

(4) M is artinian.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are straightforward. To show (4) ⇒ (1), consider
x ∈M , and the descending chain Rx ⊇ mx ⊇ m2x ⊇ · · · , which stabilizes. Therefore, mt+1x = mtx
for some t, which by NAK implies that mtx = 0. Therefore, M is m-torsion. Finally, the socle of
M is artinian and a k-vector space, so it must have finite rank.

Theorem 2.45 (Matlis duality). Let (R,m, k) be a complete local ring, and M be an R-module.

1. If M is noetherian, then M∨ is artinian.

2. If M is artinian, then M∨ is noetherian.

3. If M is artinian or noetherian, then the map M −→M∨∨ is an isomorphism.
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Proof. Write E = ER(k). If M is noetherian, consider a presentation

Rm // Rn //M // 0 .

Applying (−)∨, we get an exact sequence

0 //M∨ // En // Em .

The module (Rn)∨ ∼= En is artinian, hence so is the submodule M∨. Applying (−)∨ again, we get
the commutative diagram

Rm

∼=
��

// Rn

∼=
��

//M

��

// 0

(Rm)∨∨ // (Rn)∨∨ //M∨∨ // 0

and thus M ∼= M∨∨.
Similarly, if M is artinian, we note that R ∼= R∨∨ implies E ∼= R∨ ∼= R∨∨∨ ∼= E∨∨. Embed

M into some Ea; since the cokernel is a quotient of an artinian module, hence artinian, we get a
left-exact sequence

0 //M // Ea // Eb .

As before, we obtain a commutative diagram

0 //M

��

// Ea

∼=
��

// Eb

∼=
��

0 //M∨∨ // (Ea)∨∨ // (Eb)∨∨

and thus M ∼= M∨∨.

2.5 A quick note on graded rings and modules

Many interesting rings are equipped with an extra structure, a grading, that is helpful in making
computations (and is important for compactness properties in algebraic geometry).

Definition 2.46. A ring is N-graded if it admits a direct sum composition R =
⊕

i∈NRi such
that RiRj ⊆ Ri+j. A ring is graded with respect to an semigroup S, if, in the definition above, one
replaces N with S and + with the semigroup operation.

If R is N-graded, an R-module is Z-graded if M =
⊕

n∈NMi and RiMj ⊆ Mi+j. If R is
S-graded, and M is an R-module, M is S-graded if the analogous condition holds. We often write
[M ]i to specify the degree i summand of a graded module M .

In a graded ring or module, we say an element is homogeneous of degree i if it lies in Mi. A
homomorphism of graded modules is a module homomorphism M → N such that Mi → Ni for
all i.

For a graded ring R and i in its grading semigroup, the i-th shift functor assigns to the graded
R-module M the graded R-module M(i) such that [M(i)]j = [M ]i+j. These functors are exact.

For an N-graded ring R and a positive integer d, the d-th veronese subring of R is the N-graded
ring R(d) =

⊕
i∈NRdi. The d-th veronese functor assigns to a graded R-module M the graded

R(d)-module M (d) =
⊕

i∈NMdi. We note that these functors are exact.
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Local cohomology

3.1 Definitions of local cohomology

Recall that we defined Hi
I(M) := RiΓI(M). Now, with the theory of injectives we have so far, we

can prove some properties about these functors. But first we want to collect some other definitions
of local cohomology. Some of our descriptions involve direct limits. We recall a couple of facts
about direct limits.

Definition 3.1. Given a directed system of modules

(Mi)i∈N =
(
· · · //Mi

//Mi+1
// · · ·

)
its direct limit is the module M = lim−→i∈NMi, equipped with maps ιi : Mi →M for all i, satisfying
the property that, if there are maps αi : Mi → N that commute with the maps in the system, then
there is a unique map ϕ : M → N such that αi = ϕ ◦ ιi for all i.

This notion is functorial: given two directed systems of complexes, and maps of complexes for
each i that commute with the maps in the systems, there is an induced map on the direct limits.

Direct limits can be realized explicitly as follows: every element is represented by a class (m, i)
with m ∈ Mi. Two classes (m, i), (n, j) are the same if and only if for some k ≥ max{i, j}, the
images of m and n under the composed transition maps agree in Mk. In particular, an element
represents the zero class if and only if it is in the kernel of a large composition of the transition
map.

Similar considerations hold for systems indexed by an arbitrary poset P ; this consists of a
collection of modules Mp for p ∈ P , and commuting maps Mp →Mq for all p ≤ q.

Remark 3.2. We defined the tensor product of complexes in terms of homological notation before.
The same definition works with cohomological indexing.

Lemma 3.3.

(1) If

M
(0)
• //M

(1)
• //M

(2)
• // · · ·

is a directed system of complexes, then

Hi

(
lim−→
t

M
(t)
•

)
= lim−→

t

Hi

(
M

(t)
•

)
.

41
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(2) Given two directed systems of complexes, M
(t)
• and N

(t)
• , we have

lim−→
t

M
(t)
• ⊗N (t)

• =

(
lim−→
t

M
(t)
•

)
⊗

(
lim−→
t

N
(t)
•

)
.

The same considerations hold for arbitrary direct limits.

Proposition 3.4. Let R be a noetherian ring and I an ideal in R. For all i, there is an isomorphism
of functors

Hi
I(−) ∼= lim−→

t

ExtiR
(
R/It,−

)
.

Moreover, if {Ii}i is a sequence of ideals such that for all a ∈ N there exist b, c such that Ib ⊆ Ia

and Ic ⊆ Ia, then
Hi
I(−) ∼= lim−→

t

ExtiR (R/It,−) .

Proof. It is enough to show the later statement. Note that

ΓI(M) =
⋃
t

(
0 :M It

)
=
⋃
t

(0 :M It) = lim−→HomR(R/It,M)
(

= HomI−cts
R (R,M)

)
.

Then, if M −→ E• is an injective resolution, then

Hi
I(M) = Hi ΓI

(
0 // E0 // E1 // · · ·

)
= Hi lim−→HomR (R/It, E

•)

= lim−→Hi (HomR (R/It, E
•))

= lim−→ExtiR (R/It,M)

It is easy to see that these isomorphisms are functorial.

One important special case of the “moreover” is lim−→ExtiR
(
R/(f b1 , . . . , f

b
n),−

)
.

Remark 3.5. Earlier, we saw that Koszul cohomology and Ext•(R/I,−) measure similar things,
and are equal when I = (f1, . . . , fm), is generated by a regular sequence. Since f t1, . . . , f

t
m form an

R-sequence as well in this case, we obtain isomorphisms

H i
I(M) ∼= lim−→

t

ExtiR
(
R/(f t1, . . . , f

t
m),M

) ∼= lim−→
t

H i(f t1, . . . , f
t
m;M),

though we should take care that we have the right maps in the directed system.
In general, Koszul cohomology and Ext•(R/I,−) are not the same; we have seen examples in

the homework. However, we will soon see that they agree in the direct limit; the isomorphism
above holds for all ideals in a noetherian ring!

Let M be an R-module and x ∈ R. To compute the limit of the system

M
x //M

x //M
x //M

x // · · ·

we can replace M by M ′ = M/ΓxM , where ΓxM are the elements killed by some composition of

the maps M
x //M .

M ′
x //M ′

x //M ′
x // · · ·

M ′
1 // 1

xM
′ 1 // 1

x2M
′ 1 //
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so the direct limit is Mx. Note that we have a commutative square

M ′
xt //

1

��

M ′

1/xt

��
M ′

1 // 1
xtM

′

,

so we can identify M ′
xt //M ′ with M ′

1 // 1
xtM

′ .

Now consider a directed system of (cohomological) Koszul complexes.

K•(1;M) // K•(x;M) // K•(x2;M) // K•(x3;M) // · · ·

that is,

0

��

0

��

0

��
M

1 //

1
��

M
1 //

x

��

M
1 //

x2

��

· · ·

M
x //

��

M
x //

��

M
x //

��

· · ·

0 0 0

0

��

0

��

0

��

0

��
M

1 //

1

��

M
1 //

1

��

M
1 //

1

��

· · · M

1

��
lim−→
//

M ′
1 //

��

1
xM

′ 1 //

��

1
x2M

′ 1 //

��

· · · Mx

��
0 0 0 0

The limit of this system of Koszul complexes is the Čech complex of x on M :

Č•(x;M) :=

 0 //M //Mx
// 0

0 1


Given a sequence of elements f1, . . . , ft ∈ R, the maps K•(f ti ;R) // K•(f t+1

i ;R) given by 1 on

K0, fi on K1, induce maps

K•(fn1 )⊗ · · · ⊗K•(fnt )⊗M // K•(fn+1
1 )⊗ · · · ⊗K•(fn+1

t )⊗M

K•(fn1 , . . . , f
n
t ;M) K•(fn+1

1 , . . . , fn+1
t ;M)
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Note that

lim−→
n

K•(fn1 , . . . , f
n
t ;M) =

t⊗
i=1

lim−→K•(fni )⊗M =

t⊗
i=1

Č•(fi)⊗M.

Definition 3.6 (Čech complex). We define the Čech complex of f1, . . . , ft on M as

Č•(fn1 , . . . , f
n
t ;M) = Č•(f1)⊗ · · · ⊗ Č•(ft)⊗M.

This is also sometimes denoted as K•(f∞1 , . . . , f∞t ;M).

Example 3.7.

0 0

0 //Mg −1
//

OO

Mfg

OO

// 0

Č•(f, g;M) = = 0 //M
(1

1) //Mf ⊕Mg
(1 −1) //Mfg

// 0

0 //M

1

OO

1
//Mf

//

1

OO

0

0

OO

0

OO

2

1

0

As with the Koszul complex, easy inductions show that

• Č(f1, . . . , ft;M) ∼=
⊕

{j1,...,ji}⊆[t]

Mfj1 ···fji

• The maps between components corresponding to subsets I, J are zero if I 6⊆ J , and ±1 if
J = I ∪ {k}.

Note that
lim−→Hi(fn1 , . . . , f

n
t ;M) = Hi

(
Č(f1, . . . , ft;M)

)
=: Ȟ i(f ;M).

We will now study these cohomology modules.

Proposition 3.8. Let f = f1, . . . , ft ∈ R and I = (f1, . . . , ft).

(1) Given a short exact sequence of R-modules

0 // A // B // C // 0

there is a long exact sequence

0 // Ȟ0(f ;A) // Ȟ0(f ;B) // Ȟ0(f ;C) // Ȟ1(f ;A) // · · · .

(2) For an arbitrary direct limit system, Ȟj(f ; lim−→Mλ) ∼= lim−→ Ȟj(f ;Mλ).

(3) For any family of modules {Mλ}λ∈Λ, Ȟj(f ;
⊕

λ∈ΛMλ) ∼=
⊕

λ∈Λ Ȟ
j(f ;Mλ).



3.1. DEFINITIONS OF LOCAL COHOMOLOGY 45

(4) (invariance of base) If R
ϕ // S is a ring map, M an S-module, then

Ȟj(f ; ϕM) ∼= ϕȞ
j(ϕ(f);M).

Proof.

(1) Since Č•(f ;R) consists of flat modules,

0 // Č•(f ;A) // Č•(f ;B) // Č•(f ;C) // 0

Č•(f ;R)⊗A Č•(f ;R)⊗B Č•(f ;R)⊗ C

is a short exact sequence of complexes, so this induces a long exact sequence in cohomology.

(2)

Ȟj(f ; lim−→Mλ) = Hj(Č•(f)⊗ lim−→Mλ) = Hj(lim−→(Č•(f)⊗Mλ))

= lim−→Hj(Č•(f)⊗Mλ) = lim−→ Ȟj(f ;Mλ).

(3) This is easy to see, since the Čech complex is compatible with the direct sum decomposition.

(4) Follows from the same property noted for Koszul complexes.

Theorem 3.9 (Fundamental Theorem of Local Cohomology). Let R be a noetherian ring and
I = (f1, . . . , ft) an ideal. Then, for all R-modules M ,

RiΓI(M) ∼=
∼=

Ȟ i(f ;M)

∼=

lim−→
n

ExtiR(R/In,M) ∼= lim−→
n

Hi(fn1 , . . . , f
n
t ;M)

These isomorphisms are functorial in M and extend to isomorphisms of long exact sequences given
a short exact sequence

0 // A // B // C // 0 .

Proof. We have seen that ΓI(M) ∼= lim−→
n

ExtiR(R/In,M) and Ȟ i(f ;M) ∼= lim−→
n

Hi(fn1 , . . . , f
n
t ;M). To

show that RiΓI(M) ∼= Ȟ i(f ;M), we proceed in the following steps:

Step 1: Show ΓI(M) and Ȟ0(f ;M) are canonically isomorphic.

Step 2: Show that Ȟ>0(f ;E) = 0 for any injective module E.

Step 3: Use the previous steps to conclude the proof.

Proof of Step 1:

Ȟ0(f ;M) = H0
(

0 //M // ⊕iMfi

)
= {m ∈M |

[m
1

]
= 0 in Mfi for all i}

= {m ∈M | f�0
i ·m = 0 for all i}

= ΓI(M).

We note that the last equality uses finite generation of I in a crucial way; only
the containment “⊇” holds in general without this.
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Proof of Step 2: By the structure theorem for injectives over noetherian rings, E ∼= ⊕Eλ, where

Eλ = ER(R/P ) ∼= ERP
(RP /PRP ) .

By the direct sum property, we may replace E by ER(R/P ). By the invariance of
base property, we may replace R by RP . Now, E is an injective hull of the residue
field, so it is artinian, and we write E = lim−→Et where the Et are modules of finite
length. It suffices to show that the vanishing holds for modules of finite length.

We claim that if the desired vanishing holds for M = K, then it holds for all
modules of finite length (which would complete Step 2). We induce on the length
of L. If 1 < `(M) < ∞, then write 0 → L → M → K → 0, with `(L) < `(M).
The long exact sequence gives

· · · → Ȟ i(f ;L)→ Ȟ i(f ;M)→ Ȟ i(f ;K)→ · · · ,

and by the induction hypothesis,

· · · → 0→ Ȟ i(f ;M)→ 0→ · · · ,

for i > 0, establishing the claim.

Applying the invariance of base property again, we may assume without loss of
generality that R = K.

There are multiple ways to deal with this case. We note that if fi = 0, then

Č•(fi;K) = (0 → K → 0), and if fi 6= 0, then Č•(fi;K) = (0 → K
1−→ K → 0).

It is then an easy exercise, which we leave to you, to show that Ȟ i(f ;K) = K for

i = 0 and 0 for i > 0 if all fi’s are zero, and that Ȟ i(f ;K) = 0 for all i otherwise.

Of course, this step relied crucially on the structure theorem for injectives over
noetherian rings.

Proof of Step 3: This follows in complete generality from the previous steps.

We proceed by induction on i, with the base case being Step 1. Now, let i > 0.

We assume that we have a canonical isomorphism between Hj
I (M) and Ȟj(f ;M)

for all M and all j < i. Embed M into an injective E to get a short exact sequence

0→M → E →W → 0.

Then, there is a commutative diagram

Ri−1ΓI(E) //

∼=
��

Ri−1ΓI(W ) //

∼=
��

RiΓI(M) // 0

Ȟ i−1(f ;E) // Ȟ i−1(f ;W ) // Ȟ i(f ;M) // 0,

where bottom zero on the right comes from Step 2. This induces an isomorphism
H i
I(M) ∼= Ȟ i(f ;M). We omit the verification that this isomorphism does not

depend on the choice of embedding into an injective, and that these isomorphisms
are compatible with the connecting maps of long exact sequences.
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These four different descriptions

(1) RiΓI(M) ∼=

∼=

(2) Ȟ i(f ;M)

∼=

(1′) lim−→
n

ExtiR(R/In,M) ∼= (2′) lim−→
n

Hi(fn1 , . . . , f
n
t ;M)

of local cohomology all have different advantages for attacking problems.
The descriptions (1) and (1’) are computed from injective resolutions, as opposed to (2) and

(2’), which are computed from generators. We might think of the former as being more natural,
and the latter as being more flexible.

We note that the descriptions (1) and (2) are made entirely from “big” modules that are
somehow nice, whereas the descriptions (1’) and (2’) realize local cohomology as limits of finitely
generated modules (if M is). Some natural questions to ask already are whether we can realize the
limits in (1’) and (2’) as filtered limits / unions, and whether the resulting limits are determined
in some sense by finite stages in the limit system. We will see a few results of this form, but it’s
worth noting that questions of this form are an active topic of research.

3.2 Worksheet on Computing local cohomology using the Čech
complex

1) If I = (f1, . . . , fn) is an n-generated ideal, then

Hn
I (M) = cohomology of

(
n⊕
i=1

M
f1···f̂i···fn →Mf1···fn → 0

)
,

so elements in the n-th local cohomology can be realized as equivalence classes of fractions.

Show that[
m

f t1 · · · f tn

]
6= 0 in Hn

I (M) if and only if fk1 · · · fkt m /∈
(
f t+k1 , . . . , f t+kn

)
M for all k ≥ 0.

2) Let k be a field, R = k[x1, . . . , xn], and m = (x1, . . . , xn).

a) Show that

[
xα

xt1 · · ·xtn

]
is nonzero in Hn

m(R) if and only if xα /∈ (xt1, . . . , x
t
n).

b) Compute Hn
m(R): give a k-basis and describe the R-module structure.

c) Show that H1
(x,y)(k[x, y]) = 0. Beware that a potential element is represented by a pair of

elements in Rx and Ry, and that problem #1 does not apply.

3) Let R and m be as above, and S = k[x](d) be the subalgebra generated by the polynomials
whose degrees are multiples of d. Let n be its homogeneous maximal ideal (the ideal generated
by all d-forms in S).

a) Show that Hi
(x1,...,xn)(R) = Hi

(xd1,...,x
d
n)

(R) for all i.
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b) Show that (Rxd1···xdi
)(d) = Sxd1···xdi

for all i.

c) Show that Č•(xd1, . . . , x
d
n;S) = Č•(xd1, . . . , x

d
n;R)(d); i.e., this is the complex consisting of

sums of elements whose degree is a multiple of d in Č•(xd1, . . . , x
d
n;R).

d) Conclude that Hn
n (S) = Hn

m(R)(d). Find two linearly independent elements of highest degree
in H2

(x3,x2y,xy2,y3)(k[x3, x2y, xy2, y3]).

4) Let T =
k[x, y, u, v]

(xu− yv)
. Note that T admits an N2-grading via

deg(x) =

[
1
0

]
,deg(y) =

[
0
1

]
,deg(u) =

[
0
1

]
, deg(v) =

[
1
0

]
;

since the defining equation is homogeneous with respect to this grading, we get a well-defined
grading on T .

(a) Show that

(
v

x
,
u

y

)
is a cocycle in the Čech complex Č1(x, y;T ).

(b) Show that the class

[
v

x
,
u

y

]
of the cocycle in the previous part gives a nonzero class in

H1
(x,y)(T ).

(c) Let ηa =

[
va−1ya−1

xaya

]
∈ Ȟ2(x, y;T ). Use the grading defined above to show that ηa 6= 0 in

H2
(x,y)(T ).

(d) Show that each of the elements ηa is killed by the ideal m = (x, y, u, v). Conclude that the
socle of this local cohomology module (the submodule annihilated by the maximal ideal
m) is infinite-dimensional.

(e) Congratulate yourself; you have disproven a conjecture of Grothendieck!

5) Let R = k

[
u v w
x y z

]
and p = (uy − vx, uz − wx, vz − wy). Is H3

p(R) nonzero?

3.3 Basic properties

Let’s collect some basic properties of local cohomology. We note that many (but not all) of the
following facts can be proven quickly from more than one characterization of local cohomology.

Proposition 3.10. Let R be a noetherian ring, I an ideal, and M an R-module. Let ψ : R → S
be a ring homomorphism, and N an S-module.

1. Hi
I(M) is I-torsion for every i ≥ 0.

2. If
√
J =
√
I, then Hi

I(M) = Hi
J(M) for every i ≥ 0.

3. (Invariance of base) Hi
I(ψN) has a natural S-module structure, and Hi

I(ψN) ∼= Hi
ψ(I)S(N) as

S-modules. We often write Hi
I(N) = Hi

IS(N) to abbreviate this when the map is implicit.

4. For any arbitrary direct limit system, Hi
I(lim−→Mλ) ∼= lim−→Hi

I(Mλ).

5. (Flat base change) If ψ is flat, then S ⊗R Hi
I(M) ∼= Hi

I(S ⊗RM) ∼= Hi
IS(S ⊗RM).
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6. If p ∈ Spec(R), then Hi
I(M)p ∼= Hi

Ip(Mp).

Proof. 1. Any submodule or quotient module of an I-torsion module is I-torsion. Thus, the
cohomology of a complex of I-torsion modules, e.g., ΓI(E

•) for some injective resolution
M → E•, is also I-torsion.

2. The functors ΓI and ΓJ are the same, so they yield the same thing when applied to an
injective resolution.

3. For any x ∈ S, the S-linear map N
·x−→ N is the same as the R-linear map ψN

·x−→ ψN ; this

gives a map Hi
I(ψN)

·x−→ Hi
I(ψN) by functoriality; it follows from functoriality that the map

·xy agrees with the composition of maps ·x and ·y, so this is an S-module action.

The noted isomorphism follows from the Čech cohomology isomorphism Ȟ i(f ; ψN) ∼= Ȟ i(ψ(f);N).

4. This again follows from the Čech cohomology statement.

5. Č•(f ;M) ⊗R S ∼= Č•(f ⊗ 1;M ⊗R S). By flatness of S, cohomology commutes with taking
the tensor product.

6. Special case of flat base change.

We will find that we have the best understanding of local cohomology modules Hi
I(M) in two

situations: when I is a maximal ideal, or when M = R is a regular ring. Apropos the first of these
settings:

Proposition 3.11. Let R be a noetherian ring, I an ideal, and M an R-module. Let m be a
maximal ideal of R.

1. If M is finitely generated, then Hi
m(M) is artinian for all i.

2. Hi
m(M) ∼= Hi

m(M)m ∼= Hi
mRm

(Mm).

3. If (R,m) is local, then Hi
m(M) ∼= Hi

mR̂
(R̂⊗RM). In particular, if M is finitely generated,

then Hi
m(M) ∼= Hi

mR̂
(M̂).

4. If (R,m)→ (S, n) is a local homomorphism, and S is module-finite over the image of R, then
Hi

m(S) = Hi
n(S).

Proof. 1. By Problem #6 of HW #1, if M → E• is an injective resolution,

Γm(E•) = 0→ ER(R/m)µ(0,m) → ER(R/m)µ(1,m) → · · · .

The Bass number µ(i,m)(M) is finite, so the complex above is a complex of artinian modules.
Thus, H i

m(M) is a quotient of a submodule of a finite direct sum of copies of ER(R/m), hence,
artinian.

2. If M is m-torsion, then any element outside of m acts on M invertibly (check!). Then the
second is a special case of 6 above.

3. By flat base change, R̂⊗R Hi
m(M) ∼= Hi

mR̂
(R̂⊗RM). Since Hi

m(M) is m-torsion, it is already

the same as R̂⊗R Hi
m(M).
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4. Hi
m(S) = Hi

mS(S) = Hi
n(S), since

√
mS = n.

Remark 3.12. Both #1 and #2 of the previous proposition fail for the module H2
(x,y)

(
K[x, y, u, v]

(xu− yv)

)
from worksheet #3, with m replaced by p = (x, y).

We want to note now that if R is a graded ring, M a graded module, and I a homogeneous ideal
(i.e., an ideal generated by homogeneous elements f1, . . . , ft) then the local cohomology modules
Hi
I(M) are graded as well. This can be seen from the Čech complex:

0→M →
⊕

1≤i≤t
Mfi →

⊕
1≤i<j≤t

Mfifj → · · · →
⊕

1≤i≤t
M
f1···f̂i···ft →Mf1···ft → 0,

which is evidently a complex of graded modules in this case.
We could also see the grading from the other descriptions of local cohomology. This clear for

the Koszul description, and is easily seen to give the same grading. There is also a classification
of which graded modules are injective as objects in the category of graded modules. This endows
the other two descriptions of local cohomology with a grading, and the Fundamental Theorem is
compatible with this extra structure. We won’t develop this approach (unless I change my mind!),
but note that it is carried out throughly in Bruns & Herzog as well as Brodmann & Sharp.

3.4 Basic vanishing theorems

Our goal now is to understand, for an ideal I in a noetherian ring R, and an R-module M , what
are the least and greatest i, respectively, for which Hi

I(M) 6= 0.
There is an obvious guess (and obvious lower bound) for the least nonvanishing index: the

depth of I on M . This guess turns out to be correct.

Theorem 3.13. Let R be a noetherian ring, I an ideal, and M a finitely generated R-module.
Then,

min{i | Hi
I(M) 6= 0} = depthI(M) .

Our convention is that min(∅) = depthI(M) =∞ if IM = M . In particular, if p is prime and R
is Cohen-Macaulay, then

min{i | Hi
p(R) 6= 0} = ht(p) .

Proof. If IM = M , then there is some f ∈ I that acts as the identity on M , so In Hi
I(M) =

fn Hi
I(M) = Hi

I(M) for all n. On the other hand, Hi
I(M) is I-torsion, so it must be the zero

module.
We now assume that IM 6= M and argue by induction on the depth.
If depthI(M) = 0, then every element of I is a zerodivisor on M , so I is contained in the union

of the associated primes of M , and hence in some associated prime p of M by prime avoidance.
Then, the copy of R/p in M is killed by I, hence nonzero in H0

I(M).
Now, if the depth is d > 0, take a regular element x ∈ I on M . The SES

0→M
x−→M →M/xM → 0

yields the LES

· · · → H i−1
I (M)→ H i−1

I (M/xM)→ H i
I(M)

x−→ H i
I(M)→ · · · .
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For i < d, we obtain that x is a nzd on H i
I(M), but this module is I-torsion (hence x-torsion), so

it must be zero. Then, the LES shows that 0 6= Hd−1
I (M/xM) injects into H i

I(M), so the latter is
nonzero.

We turn our attention to the top nonvanishing local cohomology module. This will be of
recurring interest, so we give it some nomenclature.

Definition 3.14. Let R be a ring, I an ideal, and M an R-module. The cohomological dimension
of I on M is

cd(I,M) := max{i | Hi
I(M) 6= 0}.

This is closely related to another invariant of independent interest.

Definition 3.15. Let R be a ring, I an ideal. The arithmetic rank of I is

ara(I) := min{t | there exist f1, . . . , ft such that
√
I =

√
(f1, . . . , ft)}.

The following fact, now easy to prove, is one of the key points to many applications of local
cohomology.

Theorem 3.16. Let R be a noetherian ring, I an ideal. Then ara(I) ≥ cd(I,M) for all R-
modules M .

Proof. Let
√

(f1, . . . , ft) =
√
I. Then Hi

I(M) = Ȟ i(f1, . . . , ft;M), and the latter vanishes for i > t,
since the Čech complex on t elements lives only in cohomological degrees less than or equal to t.

This Theorem is useful both for understanding rank and for understanding cohomological di-
mension. We will employ it for the latter purpose first.

Example 3.17. Let K be a field, and T =
K[x, y, u, v]

(xu− yv)
. Let I = (x, y). We saw in worksheet #3

that H2
I(T ) 6= 0. We claim that the support of H2

I(T ) is V((x, y, u, v)), so Ass(H2
I(T )) = {(x, y, u, v)}.

If p is a prime that does not contain x or y, then Ip is the unit ideal, so H2
I(T )p = H2

Ip(Tp) = 0. If

p does not contain u, then x = yv
u in Tp, so Ip = (y). Thus, H2

I(T )p = H2
Ip(Tp) = 0. Similarly, if p

does not contain v, the same vanishing occurs.

Proposition 3.18. Let R be a noetherian ring, I an ideal. For any R-module, cd(I,M) ≤ cd(I,R).

Proof. Let c = cd(I). Since local cohomology commutes with direct sums, we have that Hi
I(F ) = 0

for any free module F and any i > c. Now, given an arbitrary module M , take a short exact
sequence

0→M ′ → F →M → 0

with F free. The LES of local cohomology gives isomorphisms Hi+1
I (M ′) ∼= Hi

I(M) for all i > c.
Repeating this, we find for all a > 0, that there is some module L such that Hi

I(M) ∼= Hi+a
I (M (a)).

But, since I is finitely generated, ara(I) is finite, and cd(I, (M (a)) is less than this number for all
modules. Hence, we must have that Hi

I(M) = 0.

Following the last proposition, we write cd(I) for cd(I,R). When I = m is a maximal ideal, we
can say a bit more about cohomological dimension. Recall that, by the dimension of a module, we
mean simply the dimension of R/ ann(M). We note that, if M is finitely generated, this agrees with
the dimension of the support of M as a subset of Spec(R), but this is not true if M is arbitrary
(e.g. take M = ER(k) for R of positive dimension).
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Proposition 3.19. Let (R,m) be local, and M an R-module. Then cd(m,M) ≤ dim(M).

Proof. By the invariance of base property, we may replace R by R/ ann(M), and m by its image
there, thus we can assume that dim(M) = dim(R). The maximal ideal of R is generated by dim(R)
elements up to radical, so cd(m,M) ≤ dim(R), as required.

Corollary 3.20. Let (R,m) be local. The ring R is Cohen-Macaulay if and only if Hi
m(R) = 0 for

all i 6= dim(R).

We want to now extend our cohomological dimension bounds to all ideals.

Theorem 3.21. If I is a proper ideal in a local ring (R,m, k) of dimension d, then ara(I) ≤ d.

Proof. If I = m, this is standard, so we assume that the height of I is less than d.
Let Pn = {p ∈ Spec(R) | height(p) = n and p 6⊇ I}. We will inductively find

r0, . . . , rn ∈ I such that (r0, . . . , rn) 6⊆ p for any p ∈ Pn.

Once we have done this for n = d − 1, we have d elements such that V((r0, . . . , rd−1)) = V(I),
and we are done.

To choose r0, we only need to avoid a subset of the minimal primes of R, which is finite, so we
can do this by prime avoidance.

Suppose that we have elements satisfying the specified condition for all i < n. The set of
minimal primes of (r0, . . . , rn) of height n + 1 not containing I, Min((r0, . . . , rn)) ∩ Pn+1, is finite
(and I is clearly not any such I), so we can choose an element rn+1 in I not in any of these.

Now, suppose that (r0, . . . , rn, rn+1) is contained in some p in Pn+1. Then, (r0, . . . , rn) ⊆ p
as well. If p is not minimal over (r0, . . . , rn), then take some q in between. The height of q is
less than n + 1, so q contradicts the induction hypothesis. If p is minimal over (r0, . . . , rn), then
p ∈ Min((r0, . . . , rn)) ∩ Pn+1, and rn+1 ∈ p contradicts the choice of rn+1.

Corollary 3.22. If I is an ideal in a noetherian ring, and M an R-module, then cd(I,M) ≤
dim(M).

Proof. Given a counterexample, we can localize at an associated prime of Hi
I(M), and since

Hi
I(M)p = Hi

Ip(Mp) for all p, and dim(Mp) ≤ dim(M), it suffices to assume that R is local. More-
over, by invariance of base, we can replace R by R/ ann(M), and assume that dim(R) = dim(M).
Then, applying the previous theorem, cd(I,M) ≤ ara(I) ≤ dim(R) = dim(M).

3.5 The 2× 2 minors of a 2× 3 matrix in characteristic zero

Our goal now is to apply Theorem ?? to answer one of the questions from the first day of class.
Namely, we will show that in

R = K
[
X2×3

]
= K

[
x11 x12 x13

x21 x22 x23

]
,

where K is a field of characteristic zero, the ideal

I2(X2×3) = (∆1,∆2,∆3) = (x11x22 − x12x21, x11x23 − x13x21, x12x23 − x13x22)

is not generated up to radical by fewer than three elements. Geometrically, this says that to cut
out the variety of rank at most one matrices, we need more than two equations, even though the
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codimension is two. Put yet another way, ara(I2(X2×3)) = 3. We will show that cd(I2(X2×3)) = 3.
By flat base change, we can assume that K is algebraically closed, which we do for the rest of the
section.

To do this, we will use a little bit of representation theory, which we will mostly blackbox. A
linear algebraic group G is linearly reductive if every finite dimensional representation of G splits
into a direct sum of irreducible representations. If V is a finite dimensional representation of G,
then the subspace of invariants splits off: V = V G⊕V ′, with a natural projection map ρ : V → V G,
the Reynolds operator .

Given a representation of G on V , one obtains an action of G by degree-preserving automor-
phisms on the polynomial ring K[V ] = Sym(V ∗). The ring of invariants K[V ]G is the subspace of
all invariant polynomials; it is closed under addition and multiplication. Naturality properties of
the Reynolds operator ensure that ρ(rs) = rρ(s) for any r ∈ K[V ]G. That is, ρ is a K[V ]G-linear
retraction of the inclusion K[V ]G → K[V ].

As an example of this, if G is a finite group, and K = K of characteristic zero, G is linearly
reductive: this is Schur’s Lemma. We can take the Reynolds operator to be ρ(r) = 1

|G|
∑

g∈G g(r):
averaging over the group. Reynolds operators can be realized as integration analogues of this.

Here is what we need for our purposes:

• SLn(K) is linearly reductive.

• IfG = SLn(K) acts on V = Kn×m, thought of as the space of n×m-matrices, by multiplication
on the left, then K[V ]G is the algebra generated by the maximal minors.

A proof of the second assertion will be in the next homework assignment.
Thus, S = K[∆1,∆2,∆3] = K[X2×3]SL2 is a subring of R = K[X2×3], and there is an S-linear

map R → S that is a retraction of the inclusion. We say that S is a direct summand of R to
indicate this.

Lemma 3.23. The minors ∆1,∆2,∆3 are algebraically independent in R.

Proof. It suffices to show that they are algebraically independent after specializing:

x11 7→ 1, x21 7→ 0 ; ∆1 7→ x22, ∆2 7→ x23, ∆3 7→ x12x23 − x13x22,

whence it is clear.

Theorem 3.24. If K is a field of characteristic zero, cd(I2(X2×3)) = ara(I2(X2×3)) = 3.

Proof. As noted above, we can assume that K = K by flat base change. Since K[∆1,∆2,∆3] →
K[X2×3]→ K[∆1,∆2,∆3] as K[∆1,∆2,∆3]-linear maps composes to the identity, so does

H3
(∆)(K[∆1,∆2,∆3])→ H3

(∆)(K[X2×3])→ H3
(∆)(K[∆1,∆2,∆3]),

as maps ofK[∆1,∆2,∆3]-modules. Since (∆) is a maximal ideal in the polynomial ringK[∆1,∆2,∆3],
H3

(∆)(K[∆1,∆2,∆3]) 6= 0, and hence H3
(∆)(K[X2×3]) 6= 0 as well.

Note that the invariance of base property was used in a crucial way.

Remark 3.25. The group SL2(K) is not linearly reductive in positive characteristic, so we cannot
infer that K[∆1,∆2,∆3] is a direct summand of K[X2×3] in this case. We will resolve this case
later.
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Chapter 4

Local duality, Gorenstein rings, and
canonical modules

Let m be the maximal ideal of R. We know that:

• If M is a finitely generated R-module, then Hi
m(M) is an artinian module;

• If R = M is a polyonomial ring over a field k, then Hd
m(M) ∼= ER(k).

The Matlis duals of H•m(M) are evidently finitely generated modules (if R is complete), and we
might hope that they can be realized by formulas in terms of finitely generated elements.

We will see that this turns out to be true. We will establish formulas of this form for an
increasingly general class of rings. Along the way, to understand the new class of rings we will
meet, we will pursue a more refined study of injective resolutions.

4.1 Local duality for regular rings

Lemma 4.1. If (R,m, k) is a regular local ring of dimension d, then Hd
m(R) ∼= ER(k).

We will give two proofs of this fact.

Proof. First, we note that both Hd
m(R) and ER(k) stay the same if R is replaced by its completion, so

we may assume that R is complete. By Cohen’s Structure Theorem, R = KJxK, V JxK, or V JxK/(f)
where K is a field and V a DVR.

We have seen this by explicit computation for R = kJxK (worksheet) or R = V JxK, where V is
a DVR (#2 on HW #2). Also, if f ∈ V JxK, then, from the SES 0→ R→ R→ R/fR→ 0, we get
the LES

· · · // 0 // Hd−1
m (V JxK/(f)) // Hd

m (V JxK)
f // Hd

m (V JxK) // 0 ,

where the last terms is zero since dim(R/fR) = d− 1. Consequently,

Hd−1
m (V JxK/(f)) = annHd

m(V JxK)(f) = annEV JxK(f) = EV JxK/(f)(k).

Thus, this holds for all complete regular rings.

Here is an alternative proof:

55
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Proof. When R is regular, the following is an injective resolution of R (by #6 HW #2):

0
(
→ R

)
→ ER(R)→

⊕
ht p=1

ER(R/p)→
⊕

ht p=2

ER(R/p)→ · · · →
⊕

ht p=d

ER(R/p)→ 0.

By applying Γm to this resolution, we are only left with E(R/m) in the d-th spot.

If you don’t believe in homework, don’t worry; we will generalize this soon.

Exercise 4.2.

1) If P is a flat R-module, then TorRi (P,M) = 0 for all i > 0 and all R-modules M .

2) If

· · · // Pn // · · · // P1
// P0

// (M // )0

is exact and each Pi is flat (we say this is a flat resolution of M), then TorRi (M,N) =
Hi(P• ⊗R N) for all i.

Proposition 4.3. If (R,m) is Cohen-Macaulay, and M is an R-module, then Hi
m(M) ∼= TorRd−i(M,Hd

m(R))
for all i. This isomorphism is functorial in M .

Proof. Let x1, . . . , xd be an SOP for R. The augmented Čech complex

flat resolution d d-1 0

Čech indexing 0 1 d

0 // R //
⊕

iRxi
// · · · // Rx1···xd

// (Hd
m(R) // )0

is exact, since the lower local cohomologies vanish. Thus, Č•(x;R) is a flat resolution of Hd
m(R).

Then,

Hi
m(M) = Ȟ i(Č•(x;M)) = Ȟ i(Č•(x;R)⊗RM) = TorRd−i(H

d
m(R),M).

We note that there is a switch from cohomological indexing of Čech complex and homological
indexing of a flat resolution.

Proposition 4.4 (Ext-Tor dualities). If (R,m) be a local ring of dimension d, and let (−)∨ denote
the Matlis duality functor.

1) For any (general) R-modules M and N , TorRi (M,N)∨ ∼= ExtiR(M,N∨).

2) If M is a finitely generated R-module, then TorRi (M,N∨) ∼= ExtiR(M,N)∨.

These isomorphisms are functorial in M .

Proof. Let P•(−→M) be a projective resolution of M .

1)

TorRi (M,N)∨ ∼= Hi(P• ⊗N)∨ ∼= Hi((P• ⊗N)∨) ∼= Hi(Hom(P•, N
∨)) ∼= ExtiR(M,N∨).

Given a map M →M ′, we can lift to a map on projective resolutions, and it is easy to see that
we get commuting maps through all of the isomorphisms above.
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2) By taking a minimal resolution, we may assume that P•(−→M) is a complex of finitely gener-
ated free R-modules. In this case, there is a natural isomorphism (exercise!)

P• ⊗HomR(N,E) ∼= HomR(HomR(P•, N), E).

Taking homology gives the isomorphism.

To help remember which hypothesis goes with which situation in the following, one might keep
in mind that Matlis duals of artinian modules are complete.

Theorem 4.5 (Local Duality). Let (R,m, k) be a regular local ring of dimension d. Then

1) If M is a finitely generated R-module, then Hi
m(M) = ExtRd−i(M,R)∨.

2) If R is complete and M is arbitrary, then Hi
m(M)∨ = ExtRd−i(M,R).

These isomorphisms are functorial in M .

Proof. 1.
Hi

m(M) ∼= TorRd−i(M,Hd
m(R)) ∼= TorRd−i(M,R∨) ∼= Extd−iR (M,R)∨.

2. Since R is complete, Hd
m(R)∨ ∼= R∨∨ ∼= R. Then,

Hi
m(M)∨ ∼= TorRd−i(M,Hd

m(R))∨ ∼= Extd−iR (M,Hd
m(R)∨) ∼= Extd−iR (M,R).

One often finds the just the first statement as local duality, but the second “opposite of local
duality” is quite useful as well.

Remark 4.6. By the exact same proof, if R is Cohen-Macaulay and W is some finitely generated
module such that W∨ ∼= Hd

m(R), then

• If M is a finitely generated R-module, then Hi
m(M) = Extd−iR (M,W )∨.

• If R is complete, then Hi
m(M)∨ = Extd−iR (M,W ) by the same proof.

We will return to this later.

Local duality is a powerful tool to study local cohomology modules. Part of its power comes
from its flexibility: there are many different rings, modules, and indices to plug in. Here are some
special cases:

Example 4.7. Let (R,m) be a local ring, and (S, n) another local ring such that S is regular, and
R is a quotient of S. (Such an S exists whenever R is complete, or essentially of finite type over a

field or Z.) Then, since R is a finitely generated S-module, Hi
m(R) ∼= Hi

n(R) ∼= Ext
dim(S)−i
S (R,S)∨

for all i.

Example 4.8. Let (R,m)→ (S, n) be a map of complete local rings, and suppose that R is regular,

e.g., a power series ring over a field K. Then, H
dim(R)
m (S)∨ ∼= HomR(S,R).

Here is an important application of Local Duality. Note that we are not assuming that R is
regular in the statement.
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Theorem 4.9 (Grothendieck nonvanishing). Let (R,m, k) be a local ring and M a finitely generated
R-module. Then cd(m,M) = dim(M).

Proof. We already know 6. Without loss of generality, we can assume that M is a faithful module,
by invariance of base. Complete; M̂ is R̂-faithful, dim(M) = dim(M̂), and H•m(M) ∼= H•

mR̂
(M̂).

Therefore, we may assume without loss of generality that R and M are complete.
Now R is a quotient of a power series ring, so by invariance of base we may assume without loss

of generality that R is a regular ring. Note, however, that M is not necessarily faithful anymore.
We claim that if the depth of ann(M) on an R-module N is t, then Ext<tR (M,N) = 0. This is

essentially the same as Rees’s Theorem, but we include the argument anyway. Indeed, by induction
on the depth (if positive), we can assume that Ext<t−1

R (M,N/xN) = 0 for x an N -regular element
in ann(M). From the usual LES, we see that, for i < t, x acts injectively on ExtiR(M,N) = 0, but
x annihilates this module as well, so it must be the zero module. This establishes the claim.

Now, by Local Duality, Hi
m(M) ∼= Ext

dim(R)−i
R (M,R)∨. Since Matlis Duality is faithful, the

indicated Ext is nonzero if and only if its dual is. Thus,

cd(m,M) = max{j | Hj
m(M) 6= 0} = max{dim(R)− i | Ext

dim(R)−i
R (M,R) 6= 0}

= dim(R)−min{i | ExtiR(M,R) 6= 0}
≥ dim(R)− depthann(M)(R)

≥ dim(R)− height(ann(M))

≥ dim(R/ann(M)) = dim(M).

Since dim(M) ≥ cd(m,M), equality holds throughout.

Remark 4.10. A consequence of this argument, by taking M = R/I, is that if R is a regular local
ring (or any ring for which Local Duality holds!) there are equalities for any ideal I ⊂ R:

depthI(R) = height(I) = dim(R)− dim(R/I).

Of course, these can be obtained more directly (for Cohen-Macaulay rings).

Following Remark ??, we should be able to generalize local duality, so that we can compute
local cohomology as duals of Ext modules over rings that are more relevant. The best generalization
would be in the case of a Cohen-Macaulay local ring R such that R∨ ∼= Hd

m(R). Failing that, we
would like to understand when a f.g. module K such that K∨ ∼= Hd

m(R) exists over a CM local
ring, and how else we might recognize such a K.

4.2 Gorenstein rings

Now, we pursue the injective analogues of the questions we addressed in the Section on Auslander,
Buchsbaum, and Serre: What is the injective dimension of a finitely generated module when it is
finite? Are there natural conditions on a ring that ensure finite injective dimension for all, or for
some reasonable class, of finitely generated modules? To start, we make an observation about Bass
numbers.

Definition 4.11. The injective dimension of a finitely generated R-module M , denoted injdimR(M),
is the length of its minimal injective resolution. Note that any injective resolution of M has length
at least equal to that of the minimal injective resoltuion, since a Bass number can be computed as
an Ext, whose nonvanishing implies nonvanishing in that spot for any injective resolution.
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Proposition 4.12. Let R be noetherian, and M finitely generated. If µi,p(M) 6= 0, for some prime
p, then µi+1,q(M) 6= 0 for all q with ht(q/p) = 1.

Proof. Since Bass numbers behave well under localization, we can localize at q, and assume that
dim(R/p) = 1. Pick x ∈ q \ p. From the SES

0→ R/p
x−→ R/p→ R/(p + (x))→ 0

we get the LES

· · · → ExtiR(R/p,M)
x−→ ExtiR(R/p,M)→ Exti+1

R (R/(p + (x)),M)→ · · · .

Suppose that µi+1,q(M) = 0. Then, Exti+1
R (R/q,M) = 0. The module R/(p+(x)) has finite length,

and an induction on length (similar arguments we saw earlier) shows that Exti+1
R (R/(p+(x)),M) =

0 as well. It then follows by NAK that ExtiR(R/p,M) = 0, so µi,p(M) = 0.

Corollary 4.13. Let R be noetherian, and M a finitely generated R-module.

1. injdimR(M) = max{i | ExtiR(R/m,M) 6= 0 , m a maximal ideal }.

2. injdimR(M) ≥ dim(M).

Proof. The first statement is clear. For the second, we recall that the associated primes of M are
the same as those of ER(M), so the zeroth Bass numbers are nonzero for the associated primes of
M . Then, we are guaranteed a chain of Bass numbers as long as dim(M) = max{dim(R/p) | p ∈
Ass(M)}.

The following is the injective analogue of Auslander–Buchsbaum.

Theorem 4.14. Let (R,m, k) be a local ring, and M a finitely generated module. If M has finite
injective dimension, then injdimR(M) = depth(R).

Proof. Set e = injdimR(M) and d = depth(R). Let x = x1, . . . , xd be a maximal R-sequence.
To see e ≥ d, compute ExtdR(R/xR,M) by the Koszul complex: this is Hd(x;M) = M/xM 6= 0,

so the injective resolution of M is at least this long.
To see e ≤ d, we can take a SES 0→ k → R/xR→ C → 0 and the LES

· · · → ExteR(R/xR,M)→ ExteR(k,M)→ Exte+1
R (C,M)→ · · · .

From the definition of e, the last term vanishes. Then, by Corollary ??(1), ExteR(k,M) 6= 0, so
ExteR(R/xR,M) 6= 0. Thus, e ≤ pd(R/xR) = d.

We now pursue an analogue of Auslander–Buchsbaum–Serre. Here is one such statement:

Remark 4.15. Let (R,m, k) be local. If injdimR(k) < ∞, then R is regular (and conversely).
Indeed, we know injdimR(k) = max{t | ExttR(k, k) 6= 0}. If we take a minimal resolution P• → k,
the maps in HomR(P•, k) are all zero, so ExttR(k, k) ∼= kβt . Thus, k has finite injective dimension
if and only if it has finite projective dimension.

Definition 4.16 (Gorenstein local ring). A local ring (R,m, k) is Gorenstein if for every system
of parameters x1, . . . , xd,

• x1, . . . , xd is a regular sequence (so R is CM)
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• the ideal (x1, . . . , xd) is irreducible: it cannot be written as I ∩ J for I, J ) (x1, . . . , xd).

This class of rings can be characterized in many ways. Bass was the first to point this out, and
to illustrate to importance of this class of rings. We will start this pursuit with artinian rings.

Theorem 4.17. Let (R,m, k) be an artinian local ring. TFAE:

1) R is Gorenstein: (0) is irreducible

2) dimk(soc(R)) = 1

3) ER(k) ∼= R

4) injdimR(R) <∞

4’) R is an injective R-module

Proof. (1)⇒(2): Given two linearly independent elements f, g in the socle, (f) ∩ (g) = 0.
(2)⇒(1): R is m-torsion, hence is an essential extension of its socle, so any ideal contains a

nonzero element there. If the socle is 1-dimensional, any ideal contains the whole socle.
(2)⇒(3): R is an essential extension of k, so it embeds into ER(k). Since `(R) = `(R∨) =

`(ER(k)), this is an isomorphism.
(3)⇒(2): The socle of E is a copy of k.
(3)⇒(4’): Trivial.
(4’)⇒(3): The only injectives are copies of E, and R is an indecomposable module, so this is

the only option from the structure theory.
(4’)⇒(4): Trivial.
(4)⇒(4’): Because injective dimension is the depth.

We note that if R is artinian, then it contains a copy of k, and we can reinterpret (3) as saying
that R ∼= Homk(R, k).

We now want to extend this theorem to higher dimensions. We will use another theorem of
Rees on Ext.

Theorem 4.18. Let M,N be R-modules, and x ∈ ann(M) be R-regular and N -regular. Then
Exti+1

R (M,N) ∼= ExtiR/xR(M,N/xN) for all i ≥ 0.

Proof. We will apply the same strategy as in the Fundamental Theorem of Local Cohomology to
see that for the left-exact functor F (−) = HomR/xR(−, N/xN) from R/xR-modules to R/xR-

modules, its right derived functors are RiF (−) = Exti+1
R (−, N). Note that M is an R/xR-module

by hypothesis. By definition, RiF (−) = ExtiR/xR(M,N/xN), so this will establish the theorem.

Step 1: The functors agree when i = 0. Indeed, for the SES of R-modules 0 → N
x−→ N →

N/xN → 0, there is an LES

· · · → HomR(M,N)→ HomR(M,N/xN)→ Ext1
R(M,N)

x−→ Ext1
R(M,N)→ · · · .

We observe that HomR(M,N) = 0 (any element in M has to map to something killed by x), that
HomR(M,N/xN) = HomR/xR(M,N/xN) (since both sides are killed by x), and x kills Ext1

R(M,N)
(since it kills M). The specified isomorphism follows.

Step 2: Exti+1
R (−, N) vanishes for free R/xR-modules for i > 0. Indeed, a free R/xR-module

has a free R-resolution of length one, so computing the Ext from this resolution shows the vanishing.
Step 3: This follows in the same way as Step 3 of the Fundamental Theorem of Local Coho-

mology. We leave this as an exercise.
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Theorem 4.19. Let (R,m, k) be a local ring of dimension d. TFAE:

1) R is Gorenstein

1’) R is CM and some SOP generates an irreducible ideal

2) ExtiR(k,R) ∼=

{
0 i < d

k i = d.

3) R is CM and Hd
m(R) ∼= ER(k).

4) injdimR(R) <∞

4’) injdimR(R) = d

Proof. First we want to observe that every condition implies that R is Cohen-Macaulay. For (2),
this is due to Rees’s theorem on depth and Ext (the one from a while ago). For (4), and consequently
for (4’), this follows from dim(R) ≤ injdimR(R) = depth(R). For the others, this is explicit. We
assume that R is Cohen-Macaulay henceforth.

(1)⇒(1’): trivial

(1’)⇒(2): The Ext vanishings follow from CM as noted above. Now, let (x) be the given
irreducible parameter ideal. The zero ideal in R/(x) is then irreducible, and by the artinian case,
HomR/xR(k,R/xR) ∼= k. Applying the previous theorem d times, we obtain that ExtdR(k,R) ∼= k.

(2)⇒(1): Given any SOP x of R, as in the previous implication (backwards), we see that
HomR/xR(k,R/xR) ∼= k, and apply the artinian case to see that (0) is irreducible in R/xR, so (x)
is irreducible in R.

As a consequence of these implications, we see that if R is Gorenstein local, and x a SOP, then
R is Gorenstein iff R/xR is.

(1)⇒(4’)⇒(4)⇒(1): Applying Rees’s recent theorem again, we find that if x is an SOP, then

injdimR(R) = max{t | ExttR(k,R) 6= 0} = d+max{t | ExttR/xR(k,R/xR) 6= 0} = d+injdimR/xR(R/xR).

Then, R is Gorenstein implies R/xR is too, and that it has injective dimension zero (by the artinian
case), so R has injective dimension d. If R has finite injective dimension, so does R/xR, so it is
Gorenstein, and R is too.

(2) + (4’) ⇒(3): By (2), know that µi,m(R) is zero for i < d and is one for i = d; by (4) it is
zero for i > d. Thus, taking Γm of an injective resolution of R leaves just one copy of ER(k) in
cohomological degree d.

(3)⇒(2): Again, the Ext vanishing is a consequence of Cohen-Macaulayness. By the Lemma on
ascending Bass numbers, ExtdR(k,R) 6= 0. In the Theorem characterizing Bass numbers in terms of
Ext, we saw that if E• is an injective resolution of R, HomR(k,E•) has vanishing differentials; this
was explicitly stated and established as a claim. This means that, in a minimal injective resolution,
any socle element is in the kernel of the differential. Now consider Γm(E•). This is zero up to
cohomological dimension d. Then, we have

0→ ER(k)⊕µd,m
d−→ ER(k)⊕µd+1,m → · · ·

and k⊕µd,m ∼= soc(ER(k)⊕µd,m) ⊆ ker(d) = Hd
m(R).

The following is now evident from the remark after the proof of Local Duality for regular rings.
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Corollary 4.20 (Local Duality for Gorenstein rings). Let (R,m, k) be a Gorenstein local ring of
dimension d. Then

1) If M is a finitely generated R-module, then Hi
m(M) = ExtRd−i(M,R)∨.

2) If R is complete and M is arbitrary, then Hi
m(M)∨ = ExtRd−i(M,R).

These isomorphisms are functorial in M .

4.3 Worksheet on Gorenstein rings

1. Let (R,m, k) be a local ring. Show1 the following:

(a) R is Gorenstein if and only if R̂ is Gorenstein.

(b) If x1, . . . , xi is a regular sequence, then R is Gorenstein if and only if R/(x1, . . . , xi) is
Gorenstein.

(c) If R is Gorenstein, and p ∈ Spec(R), then Rp is Gorenstein.

Definition 4.21. A local ring (R,m, k) is a complete intersection if there is a surjection from a
complete regular local ring S onto R̂ with the kernel generated by a regular sequence.

Remark 4.22. The following are equivalent:

• R is a complete intersection;

• For every2 surjection from a complete RLR S � R̂, the kernel is generated by a regular
sequence;

and IF there exists a surjection from an RLR onto R itself,

• For every surjection from an RLR S � R, the kernel is generated by a regular sequence.

Not all of these equivalences are obvious, but we will use them freely.

2. Show that if R is a complete intersection, then R is Gorenstein.

3. Let K be a field. For each of the following rings R determine: Is R Gorenstein? Is R Cohen-
Macaulay? Is R a complete intersection? Reuse your work from old worksheets and HW
when convenient.

(a) R =
KJx, yK
(x2, xy)

.

(b) R =
KJx, y, zK

(xy, xz, yz)
.

(c) R =
KJx, y, zK

(x2, y2, z2, x(y − z), (x− y)z)
.

(d) R =
K[X2×3]m
I2(X2×3)

, where m is the ideal generated by the entries of X.

1or note that we have already shown
2This quantifier is never vacuous by Cohen’s Structure Theorem.
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(e) R = K[x, y]
(2)
m , where m is the ideal generated by the positive degree forms.

(f) R = K[x, y]
(3)
m , where m is the ideal generated by the positive degree forms.

(g) R = K[x, y, z]
(3)
m , where m is the ideal generated by the positive degree forms.

4. Let (R,m) and (S, n) be two complete Gorenstein local rings, with R = S/I.

(a) Use Local Duality to show that ExttS(R,S) =

{
0 t < dim(S)− dim(R)

R t = dim(S)− dim(R).

(b) Suppose moreover that S is regular. Let P• → R be the minimal free resolution of R as
an S-module. Show that, P• ∼= HomS(P•, S).34

(c) With the same assumptions as in the previous part, show that TorSi (R,M) ∼= ExtiS(R,M)
for all S-modules M .

5. A numerical semigroup is a subsemigroup S of N; our convention is that 0 ∈ S. A numerical
semigroup ring is a ring of the form K[S] := K[{xs | s ∈ S}] ⊆ K[x]. Assume that the GCD
of the elements in S is 1. Then, there is a largest number fS ∈ N such that fS /∈ S, called
the Frobenius number of S.

(a) Show that H1
m(K[S]) is generated as a K vector space by {xa | a ≤ fS and a /∈ S}.5

(b) Show that K[S]m is Gorenstein if and only if

{c | 0 ≤ c ≤ fS , c /∈ S} = {fS − d | 0 ≤ d ≤ fS , d ∈ S}.

(c) Check this criterion with KJx3, x7K, KJx3, x5, x7K, and KJx4, x5, x6K.

6. Show that if R is a Gorenstein local ring, and M is a finitely generated R-module, then M
has finite projective dimension if and only if M has finite injective dimension.

We summarize some implications and non-implications on the structural properties of local
rings we have encountered:

regular⇒ complete intersection⇒ Gorenstein⇒ Cohen-Macaulay

complete intersection 6⇒ regular: K[x]/(x2), K[x2, xy, y2], K[x,y,z,u,v,w]
(u2+v2+w2,x2+y2+z2)

,. . .

Gorenstein 6⇒ complete intersection: R = KJx,y,zK
(x2,y2,z2,x(y−z),(x−y)z)

, R = K[x, y, z]
(3)
m ,. . .

Cohen-Macaulay 6⇒ Gorenstein: R = KJx,y,zK
(xy,xz,yz) , R = K[X2×3]m

I2(X2×3) , KJx3, x5, x7K,. . .

4.4 Canonical modules

Definition 4.23. A canonical module over a Cohen-Macaulay local ring (R,m, k) is a finitely

generated module ωR such that HomR(ωR, ER(k)) ∼= H
dim(R)
m (R).

Example 4.24. For a Cohen-Macaulay local ring (R,m, k), the rank one free module R is a
canonical module if and only if R is Gorenstein.

3To match up the indexing, P• ∼= [HomS(P•, S)]d−•
4You can use without proof the fact that any two minimal resolutions are isomorphic.
5Hint: Consider the ideal J = xfS+1K[x] in K[S].
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Example 4.25. If R is complete local (and CM), then, by Matlis duality, ωR = H
dim(R)
m (R)∨ is

noetherian and ω∨R = H
dim(R)
m (R)∨∨ = H

dim(R)
m (R), so ωR is a canonical module. Moreover, if M is

noetherian and M∨ ∼= H
dim(R)
m (R), then M ∼= M∨∨ ∼= H

dim(R)
m (R)∨ = ωR, so all canonical modules

of R are isomorphic.

Example 4.26. If R is artinian local (and hence complete), then all of R is m-torsion, so R =
H0

m(R). Since ER(k)∨ ∼= R, ER(k) is a canonical module in this case.

In our original proof of local duality in the regular case, we noted that the proof worked in
greater generality. Our definition of canonical module is designed to exactly fulfill that situation.

Theorem 4.27 (Local Duality for Cohen-Macaulay rings). Let (R,m, k) be a Cohen-Macaulay
local ring of dimension d, and ωR a canonical module.

1. If M is a finitely generated R-module, then Hi
m(M) = ExtRd−i(M,ωR)∨.

2. If R is complete and M is arbitrary, then Hi
m(M)∨ = ExtRd−i(M,ωR).

These isomorphisms are functorial in M .

Of course, we want to find conditions under which canonical modules exist, and to have methods
to find them.

Lemma 4.28. Let ϕ : (A, n, l) → (R,m, k) be a homomorphism of local rings. Suppose that R is
module-finite over the image of A: e.g., R = A/I, or A ⊆ R is a module-finite inclusion.

Set (−)∨A = HomA(−, EA(l)) and (−)∨R = HomR(−, ER(k)).
For any R-module M , M∨A ∼= M∨R , as A-modules or as R-modules.

Proof. This follows from the lemma on the behavior of the injective hull of the residue field under
such maps and Hom-tensor adjunction:

HomA(M,EA(l)) = HomA(M ⊗R R,EA(l)) = HomR(M,HomA(R,EA(l)) = HomR(M,ER(k)).

These isomorphisms are all valid as A-modules or as R-modules.

The following proposition is the key source of canonical modules.

Proposition 4.29. Let ϕ : (A, n, l) → (R,m, k) be a homomorphism of local rings. Suppose that
R is module-finite over the image of A: e.g., R = A/I, or A ⊆ R is a module-finite inclusion.

Suppose that A and R are Cohen-Macaulay, and that ωA is a canonical module for A. Then

Ext
dim(A)−dim(R)
A (R,ωA) is a canonical module for R.

Proof. Since R and ωA are finitely generated A-modules, the A-modules Ext•A(R,ωA) are noetherian
A-modules. They are R-modules as well, and noetherian R-modules as such.

We then apply local duality over A, and the previous lemma:

H
dim(R)
m (R) = H

dim(R)
n (R) = Ext

dim(A)−dim(R)
A (R,ωA)∨A = Ext

dim(A)−dim(R)
A (R,ωA)∨R .

Since local duality is functorial, the map R
·r−→ R for any r ∈ R induces the same map on both

sides, so this is an isomorphism of R-modules.

Corollary 4.30. If R is a CM quotient of a Gorenstein local ring A, then R has a canonical
module, namely, ωR = ExtcA(R,A), where c = dim(A)− dim(R).
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Example 4.31. In the first homework, you showed that for A = K[X2×3] and R = A/I2(X), R
is Cohen-Macaulay, and Ext2

A(R,A) is the cokernel of the map A3 → A2 given by the matrix XT .
Evidently, this two-generated module is a canonical module for R.

Example 4.32. Let R = K[x3, x2y, xy2, y3], and A = K[x3, y3]. We can write R = A ⊕ x2yA ⊕
xy2A. We have that HomA(R,A) is a canonical module for R. To understand this module more
concretely, note that HomA(R,A) is generated by the maps φ1, φx2y, φxy2 dual to the basis of R
over A specified above. Evidently, φ1 = x2y · φx2y = xy2 · φxy2 , so we can ignore φ1 as a generator.
The maps φx2y, φxy2 both decrease degrees by 3, so neither is a multiple of the other. One relation
between the maps is given above. It is easy to find a few more: x3 · φx2y = x2y · φxy2 and
xy2 · φx2y = y3 · φxy2 .

Our next goal is to show that canonical modules are unique up to isomorphism when they exist.
We want to do this by reducing to the complete case, where we have already observed this. To this
end, we will collect a few facts on completion and Matlis duality.

Lemma 4.33. Let (R,m, k) be local, and M and N be finitely generated R-modules.

1. If M̂ ∼= N̂ , then M ∼= N .

2. M∨∨ ∼= M̂ .

3. M∨ ∼= M̂∨, where the latter dual is as a R̂-module.

Proof. 1. Let φ : M̂ → N̂ be an isomorphism, in particular, surjective. First, we note that

Hom
R̂

(M̂, N̂) ∼= R̂⊗R HomR(M,N) ∼= ̂HomR(M,N).

Thus, we can pick α ∈ HomR(M,N) such that φ − α̂ ∈ m ̂HomR(M,N). If n ∈ N satisfies

n = φ(m′), with m′ ∈ M̂ , take m ∈ M with m − m′ ∈ mM̂ , so α(m) ∈ n + mN . Thus,
N ⊆ im(α) + mN , and hence im(α) = N by NAK.

Similarly, we can find a surjection ψ : N →M , and hence a surjection ψ ◦α : M →M . Since
M is finitely generated, ψ ◦ α : M → M must be an isomorphism, hence injective. Then,
α : M → N must be injective too, hence an isomorphism.

2. We have already seen that R∨∨ ∼= R̂. Then, given a presentation

Ra
A−→ Rb →M → 0,

applying double duality gives

(Rm)∨∨

∼=
��

A // (Rn)∨∨

∼=
��

//M∨∨ // 0

R̂m
A // R̂n // M̂ // 0

and thus M∨∨ ∼= M̂ .

3. Recall that ER(k) ∼= R̂ ⊗R ER(k) ∼= E
R̂

(k). Since M∨ is artinian, and applying flat base
change

HomR(M,ER(k)) ∼= R̂⊗RHomR(M,ER(k)) ∼= Hom
R̂

(R̂⊗RM, R̂⊗RER(k)) ∼= Hom
R̂

(M̂,E
R̂

(k)).
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Proposition 4.34. If (R,m, k) is a CM local ring, then a finitely generated module ω is a canonical
module for R if and only if ω̂ is a canonical module for R̂. Consequently, any two canonical modules
for R are isomorphic.

Proof. The first statement follows immediately from part (3) above.

If M and N are canonical modules for R, then M̂ and N̂ are canonical modules for R̂. As noted
earlier, this implies that M̂ ∼= N̂ , so by part (1) of the previous lemma, M ∼= N .

Here is one application of the uniqueness of canonical modules.

Corollary 4.35. Let (R,m, k) be a RLR, and I ⊆ R an ideal. If R/I is Gorenstein, then the
minimal free resolution P• of R/I as an R-module is symmetric:

0→ R
Ac−1−→ Rβ1

Ac−2−→ Rβ2 · · · A2−→ Rβ2 A1−→ Rβ1 A0−→ R(→ R/I)→ 0,

with Ac−1 = AT0 , Ac−2 = AT1 (up to change of bases).

Proof. Let c = dim(R) − dim(R/I). More naturally, the claim is that P• ∼= HomR(P•, R) after
reindexing the latter (changing the indices from cohomological 0, 1, . . . , c to homological c, c −
1, . . . , 0). The complex HomR(P•, R) has homology Ext•R(R/I,R). The complex vanishes past
position c by Auslander-Buchsbaum. The homology below degree c vanishes by Rees (or local
duality). The homology at position c is a canonical module for R/I, so must be R/I itself, since
R/I is Gorenstein. Thus, HomR(P•, R) after the reindexing is a minimal free resolution for R/I.
Any two minimal free resolutions are isomorphic (exercise!).

Proposition 4.36. Let (R,m, k) be Cohen-Macaulay, ωR be a canonical module for R, and f =
f1, . . . , ft be a regular sequence on R. Then

1. ωR/fωR is a canonical module for R/fR, and

2. f is a regular sequence on ωR.

In particular, a canonical module is a maximal Cohen-Macaulay module.

Proof. For the first statement, compute ExttR(R/fR, ω) ∼= Ht(f ;ω) ∼= ωR/fωR.
We prove (2) by induction on t. Suppose both statements are true for f ′ = f1, . . . , ft−1, and

set M to be M/f ′M . Then, annω̄(ft) ∼= HomR̄(R̄/ftR̄, ω̄). Applying (1), ω̄ ∼= ωR̄. We apply

local duality to see that HomR̄(R̄/ftR̄, ω̄)∨ ∼= H
dim(R̄)
m (R̄/ftR̄) = 0. Thus, ft is a nonzerodivisor

on ω̄.

Lemma 4.37. Let (R,m, k) be a Cohen-Macaulay local ring with canonical module ωR. Then
R ∼= HomR(ωR, ωR) by the map r 7→ “multiply by r”.

Proof. Since R̂ is faithfully flat over R, it suffices to check to isomorphism after tensoring with R̂.
Since both sides are finitely generated, this is the same as completing, which turns R into R̂, and
HomR(ωR, ωR) into Hom

R̂
(ω
R̂
, ω

R̂
). Thus, we can assume that R is complete. Then, if f1, . . . , fd

is a SOP for R, write Rt = R/(f t1, . . . , f
t
d). Then ωR = lim←−ωR ⊗R Rt = lim←−ωRt .

We claim that HomR(ωR, ωR) ∼= lim←−HomRt(ωRt , ωRt). Indeed, an R-linear map f : ωR → ωR
induces a sequence of maps ft = f ⊗R Rt : ωRt → ωRt such that ft+1 ⊗Rt+1 Rt = ft. This gives
an element in the inverse limit. Conversely, given such a sequence of maps {fn} with the same
compatibility property, one can define an R-linear map f from ωR to ωR by the rule

f(w) mod (xt1, . . . , x
t
d)ωR := fn(w) mod (xt1, . . . , x

t
d)ωR.
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Since Rt is artinian, ωRt
∼= ERt . Then, HomRt(ERt , ERt)

∼= Rt by the natural map, and passing
to the inverse limit gives the isomorphism.

A CM local ring has a canonical module if and only if it is a quotient of a Gorenstein ring.
Given a ring R and a module M , the trivial extension or idealization of R by M is the ring RoM
with R-module structure R oM ∼= R ⊕M and multiplication (r,m)(r′,m′) = (rr′, rm′ + r′m). It
is easy to check that this structure makes RoM into a ring in which 0⊕M is an ideal with square
zero, and R ∼= (RoM)/(0⊕M). If (R,m) is local, then (RoM,m⊕M) is local as well.

Proposition 4.38. Let (R,m, k) be a Cohen-Macaulay local ring with canonical module ωR. The
trivial extension R o ωR is a Gorenstein local ring. Thus, if R has a canonical module, R is a
quotient of a Gorenstein ring.

Proof. Note that R o ωR is a finitely generated R-module. Since a regular sequence on R is also
regular on ωR, this ring is also Cohen-Macaulay.

We compute a canonical module for R o ωR as HomR(R o ωR, ωR). As an R-module, this
Hom is isomorphic to HomR(R,ωR)⊕HomR(ωR, ωR) ∼= ω ⊕R. I’ll leave to you as an exercise the
routine check that the module structure on this ω ⊕R induced by the premultiplication action on
HomR(Ro ωR, ωR) agrees with the structure of Ro ωR.

We now show that canonical modules localize. We could work with the construction above to
do this, but we will give a slightly more flexible proof. We prepare for this with a lemma.

Lemma 4.39. Let (R,m, k) be a Cohen-Macaulay local ring, and I ⊆ R be an ideal. Then
height(I) = dim(R)− dim(R/I).

Proof. Since height(I) = min{height(p) | p ∈ Min(I)} and dim(R/I) = max{dim(R/p) | p ∈
Min(I)}, it suffices to show the equality for prime ideals, so let p be prime. By the worksheet
on CM rings, we know that height(p) = depthp(R), and dim(R) = dim(R/q) for all q ∈ Ass(R).
Setting h = height(p), take a regular sequence f1, . . . , fh ⊆ p. Since f is a regular sequence,
height(f) = h, so p must be a minimal prime of (f). Then R/(f) is CM of dimension dim(R)− h.
But p ∈ Ass(R/(f)), so dim(R/p) = dim(R)− h, as required.

Proposition 4.40. If (R,m, k) is a Cohen-Macaulay local ring, ωR is a canonical module, and
p ∈ Spec(R), then ωRp is a canonical module for Rp.

Proof. Let (S, n, l) be a Gorenstein ring mapping onto R, so that ωR ∼= Ext
dim(S)−dim(R)
S (R,S).

Let p ∈ Spec(R), and q be the contraction of p in S. We note that if R = S/I, since S is
Cohen-Macaulay, by the previous lemma,

dim(Sq)− dim(Rp) = heightSq
(ISq) = heightS(I) = dim(S)− dim(R).

Then,

(ωR)p ∼= (Ext
dim(S)−dim(R)
S (R,S))p ∼= Ext

dim(S)−dim(R)
Sq

(Rp, Sq) ∼= Ext
dim(Sq)−dim(Rp)
Sq

(Rp, Sq)

is a canonical module for Rp, since Sq is Gorenstein.

Exercise 4.41. Show that the minimal injective resolution of a canonical module has the same
form as the minimal injective resolution of a RLR we found in the last homework.
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Exercise 4.42. Show that if (R,m, k) is a Cohen-Macaulay local ring that is a quotient of a
Gorenstein ring, a module M is a canonical module for R if and only if M is finitely generated and

ExtiR(k,M) ∼=

{
k if i = dim(R)

0 if i 6= dim(R).

Proposition 4.43. Let (R,m, k) be a CM local ring with canonical module ωR. Suppose that for
every minimal prime p of R, Rp is Gorenstein6, e.g., R is reduced. Then there is some ideal I of
R such that ωR ∼= I. If I ∼= ωR, then every associated prime of R/I has height one.

Proof. We note that if R is reduced, and p ∈ Min(R), then Rp is a field, so “e.g.” is valid.

First, we show that ωR is isomorphic to an ideal. The point is that (ωR)p ∼= ωRp
∼= Rp

for all minimal primes p of R, using the exercise above and the hypothesis. If W is the set of
nonzerodivisors of R, which is the same as the set of nonzerodivisors on ωR, then W−1ωR ∼=∏
ωRp
∼=
∏
Rp
∼= W−1R. Then, an isomorphism W−1ωR ∼= W−1R restricts to an injection from

α : ωR ↪→ W−1R. If w1, . . . , wt is a generating set for ωR, and α(wi) = ri/si, then s1 · · · stα is an
injective map from ωR to R.

Now, we show that such an ideal has all associated primes of height one. To obtain a con-
tradiction, suppose we have some q ∈ Ass(R/I) of height at least two. We have that Rq is CM
of dimension at least two, with canonical module IRq, so depth(IRq) ≥ 2. On the other hand,
depth(Rq/IRq) = 0, and depth(Rq) ≥ 2, so depth(IRq) = 1. This is the desired contradiction.

We recall the following fact about factorization:

Exercise 4.44. If R is a UFD, and I ⊆ R is such that every associated prime of R/I has height
one, then I is principal.

The following is now evident.

Theorem 4.45. If (R,m, k) is a Cohen-Macaulay UFD, and R is a quotient of a Gorenstein ring,
then R is Gorenstein.

Proof. R has a canonical module isomorphic to an unmixed height one ideal, which is necessarily
principal. Thus, the canonical module is isomorphic to R itself.

It turns out that one cannot drop the Cohen-Macaulay hypothesis in the previous theorem.

Example 4.46. Let S = F2[x1, x2, x3, y1, y2, y3], and n = (x1, . . . , y3). Let G = {e, σ} be a group
of order two, where e is the identity. Let G act on S by the rule σ(xi) = yi and σ(yi) = xi for all
i. Consider the ring of invariants SG with maximal ideal m, the contraction of n. We claim that
(SGm ,m,F2) is a UFD that is not Cohen-Macaulay.

SGm is a UFD: We show that SG is a UFD. Consider an element f ∈ SG. Since S is a UFD, f

admits a factorization into S-irreducibles:

f = a1 · · · at.

Then,

a1 · · · at = f = σ(f) = σ(a1) · · · σ(at).

6We say that such an R is generically Gorenstein
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Each σ(ai) must be irreducible, since one could apply σ to a nontrivial factorization to get a
nontrivial factorization of ai. Thus, there is some τ ∈ St such that σ(ai) = uiaτ(i) for some units
ui. But, the only unit in S is 1. Thus, we can regroup the ai’s in such a way that

f = b1 · · · br · c1 · · · cs · σ(c1) · · · σ(cs),

with all bi’s and ci’s irreducible in S, σ(bi) = bi, and σ(ci) 6= ci. In particular, any irreducible
element of SG must be of the form b1 or

(
c1 σ(c1)

)
. It is then clear that any factorization of f into

SG-irreducibles must be of the (unique!) form

f = b1 · · · br ·
(
c1 σ(c1)

)
· · ·
(
cs σ(cs)

)
.

SGm is Cohen-Macaulay: By the Theorem on symmetric polynomials, F2[x1, y1] is rank two free

module over the polynomial subring F2[x1 + y1, x1y1]. After self-tensoring, we see that S is a rank
eight free module over the polynomial subring A = F2[{xi + yi, xiyi | i = 1, 2, 3}]. Since A consists
of invariants, A ⊆ SG ⊆ S, so A is a Noether normalization of SG. Hence, {xi+yi, xiyi | i = 1, 2, 3}
is a SOP for SGm .

We claim that x1 + y1, x2 + y2, x3 + y3 is not a regular sequence in SGm . Indeed, we have the
relation

(x1 + y1)(x2y3 + x3y2) + (x2 + y2)(x1y3 + x3y1) + (x3 + y3)(x1y2 + x2y1) = 0

since every monomial in the expansion appears twice and SG has characteristic two. Each of the
(−) elements above invariant, so this is a relation in SG, and gives a relation in SGm .

Now, we observe that the set of linear forms fixed by the group action is generated over F2

by x1 + y1, x2 + y2, x3 + y3. The 2-form x1y2 + x2y1 cannot be generated by these linear forms,
so x1y2 + x2y1 /∈ (x1 + y1, x2 + y2)SG. We claim that x1y2 + x2y1 /∈ (x1 + y1, x2 + y2)SGm as
well; we leave this as an easy exercise for you. Then, we conclude that x3 + y3 is a zerodivisor in
SGm/(x1 + y1, x2 + y2)SGm . Therefore, SGm is not Cohen-Macaulay.

Example 4.47. We now give a brief indication of a CM local ring with no canonical module.
The hard work for this example is due to Ferrand and Raynaud, Fibres formelles d’un anneau
locale nothérian, who give an example of a 1-dimensional local domain (R,m, k) such that R̂ is not
generically Gorenstein: for some minimal prime p of R̂, R̂p is not Gorenstein.

Note that R is Cohen-Macaulay, simply because it contains a nonzerodivisor. Suppose, that R
has a canonical module ω. Then, since R is a domain, and hence generically Gorenstein, there is
an ideal I of pure height one, which hence is m-primary, such that ω ∼= I. Then, R̂ is CM, with
canonical module ω̂ ∼= Î, which is also m-primary. Thus, Î is not contained in any p ∈ Min(R̂).
Thus, for p ∈ Min(R̂), we have

R̂p = Îp ∼= ω̂p,

which contradicts the fact that R̂ is not generically Gorenstein.

Later examples of T. Ogoma exhibit Cohen-Macaulay UFDs that are not Gorenstein, hence,
that have no canonical module.

4.5 Graded local duality and regularity

Let R be a graded ring. Unless noted otherwise, this means an N-graded ring such that R0 = K is
a field, and R is finitely generated over R0. Then, the ideal m =

⊕
i>0Ri is a maximal ideal, the

maximal homogeneous ideal. We will say that (R,m,K) is graded to refer to this setup.
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We recall that if M is graded, and I generated by homogeneous elements, then the Čech complex
is graded, so Hi

I(M) is Z-graded. In particular, Hi
m(M) is Z-graded.

For a graded module, we set the top degree and bottom degree of M to be

topdeg(M) := max{i ∈ Z | [M ]i 6= 0} and botdeg(M) := min{i ∈ Z | [M ]i 6= 0}.

Theorem 4.48. Let (R,m,K) be graded, and M a finitely generated graded module. Then

topdeg(Hi
m(M)) <∞ for all i, and dimK([Hi

m(M)]j) <∞ for all i, j.

Proof. We recall that since m is a maximal ideal and M finitely generated, Hi
m(M) is artinian. The

descending chain of submodules Mn = [Hi
m(M)]≥n must stabilize, so that [Hi

m(M)]≥n = [Hi
m(M)]>n

for all n greater than some N ; that is, [Hi
m(M)]n = 0 for all n greater than some N .

Now, the modules [Hi
m(M)]j ∼= [Hi

m(M)]≥j/[H
i
m(M)]>j are also artinian, and are K-vector

spaces, hence finite dimensional.

Example 4.49. The simple example H1
(x)(K[x, y]) shows that both statements can fail for local

cohomology not supported in a maximal ideal.

Definition 4.50. If (R,m,K) is graded of dimension d, we define the a-invariant of R to be
a(R) = topdeg(Hd

m(R)).

For two graded R-modules, M and N , we define the homogeneous maps of degree i as

HomR(M,N)i = {φ : M → N | φ is R-linear and φ(Mj) ⊆ Ni+j for all j },

and the module of graded homomorphisms

HomR(M,N) =
⊕
i∈Z

HomR(M,N)i.

If M is a finitely generated graded R-module, and N an arbitrary graded R-module, then any
R-linear map from M to N can be written as a sum of homogeneous maps: if M is generated by
homogeneous elements m1, . . . ,mt, then set ϕd(mi) = [ϕ(mi)]d−deg(mi) for all i; these extend to
homogeneous maps from M to N , only finitely many of which are nonzero, and they sum to ϕ.
Thus, HomR(M,N) = HomR(M,N), after “forgetting the graded structure.” However, this is false
if M is not finitely generated over R: for example, if M is free, the LHS gives a direct sum whereas
the RHS gives a direct product.

If M is a finitely generated graded R-module, then M admits a graded free resolution by finitely
generated modules: M can be generated by homogeneous elements, so there is a surjection from a
finitely generated graded free module into M ; moreover, we can choose this in such a way to induce
an isomorphism F0 ⊗R/m ∼= M ⊗R/m:

F0 =
⊕
j∈Z

R(−j)β0,j −→M −→ 0,

with only finitely many β0,j 6= 0. The kernel of this map is a finitely generated graded module, so
we can choose a surjection from a finitely generated graded free module onto it, and again we can
choose one that induces an isomorphism module m. Repeating, we obtain a free resolution of the
form

· · · −→
⊕
j∈Z

R(−j)β2,j −→
⊕
j∈Z

R(−j)β1,j −→
⊕
j∈Z

R(−j)β0,j (−→M) −→ 0,



4.5. GRADED LOCAL DUALITY AND REGULARITY 71

with the image of each differential contained in m times the next module. This a graded minimal
free resolution of M , and the numbers βi,j are the graded betti numbers of M .

Consequently, if M is finitely generated, ExtiR(M,N) and TorRi (M,N) admit natural gradings.

Exercise 4.51. If (R,m,K) is graded, and M is a finitely generated graded R-module, then
βi,j = dimK [TorRi (M,K)]j . Use this to show that if R is a polynomial ring, the minimal resolution
of M is finite.

Define the graded Matlis duality functor (−)? from graded R-modules to graded R-modules by
the rule M? = HomK(M,K). Note that M(d)? ∼= M?(−d). From worksheet #2 we know that if
M is a finitely generated R-module, M? ∼= M∨ after “forgetting the grading.”

Definition 4.52. A graded ring (R,m,K) is Cohen-Macaulay if Rm is Cohen-Macaulay.

Remark 4.53. This definition is consistent with the general definition of Cohen-Macaulayness for
non-local rings. To see this, one can take a homogeneous Noether normalization K[x1, . . . , xd] ⊆ R
and show that this map is flat if and only if K[x1, . . . , xd](x) ⊆ Rm is flat. You are encouraged to
fill in the rest of the argument!

Definition 4.54. A graded ring (R,m,K) of dimension d is Gorenstein if it is Cohen-Macaulay
and R(a)? ∼= Hd

m(R).

Note that if R(d)? ∼= Hd
m(R) for some d, then d = a. We caution the reader that the phrase

graded Gorenstein ring is often reserved for the case when a(R) = 0. To avoid any confusion, we
will try to stick with “Gorenstein graded ring” to refer to the situation prescribed in the definition
above.

Example 4.55. Let R = K[x1, . . . , xd] be a polynomial ring with deg(xi) = di. Then R is a
Gorenstein graded ring with a-invariant −

∑
i di.

Lemma 4.56. Let (R,m,K) be a Gorenstein graded ring of dimension d. If f is a nzd on R of
degree e, then R/fR is Gorenstein with a(R/fR) = a(R) + e.

Proof. Set a = a(R) and d = dim(R). From the SES

0→ R(−e) f−→ R→ R/fR→ 0,

apply H•m(−) to get

0→ Hd−1
m (R/fR)→ Hd

m(R)(−e) f−→ Hd
m(R)→ 0,

and apply (−)?(−a− e) to get

0→ (R/fR)?(−a− e)→ R?(−a− e) f−→ R?(−a)→ 0.

There are commuting isomorphisms between the last two elements in each SES, so the first terms
are isomorphic too.

Example 4.57. R = K[x,y,z]
(x2+y2+z2)

has a negative a-invariant, a(R) = −1, while S = K[x,y,z]
(x4+y4+z4)

has

a positive a-invariant, a(S) = 1.

Theorem 4.58 (Graded local duality). Let (R,m,K) be a Gorenstein graded ring of dimension
d = dim(R) with a-invariant a. If M is a finitely generated graded R-module, then both dualities
hold:

Hi
m(M) ∼= Extd−iR (M,R)?(−a) and Hi

m(M)? ∼= Extd−iR (M,R)(a).
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Proof. This is on the homework. It follows by the same steps as the local Local Duality.

We now want to apply this duality to show that a version of “free resolution complexity” is
equivalent to a version of “cohomological complexity.” Let us define some of these notions. Beware
that the names below are nonstandard and will just be used temporarily here.

Definition 4.59. Let (R,m,K) be a Gorenstein graded ring of dimension d = dim(R) with a-
invariant a. Let M a finitely generated graded module of finite projective dimension.

1. The Tor-regularity of M is

t-reg(M) := max
i
{topdeg(TorRi (M,K))− i}+ (a+ d) = max

i,j
{j − i | βi,j 6= 0}+ (a+ d).

2. The Ext-regularity of M is

e-reg(M) := max
i
{−botdeg(ExtiR(M,R))− i}+ (a+ d).

3. The cohomological-regularity of M is

c-reg(M) := max
j
{topdeg(Hj

m(M)) + j}.

We note that c-reg(M) is finite, by the lemma above, and that t-reg(M) and e-reg(M) are finite
since M has a finite free resolution by finitely generated free modules. What we will show is the
following.

Theorem 4.60. Let (R,m,K) be a Gorenstein graded ring. Let M be a finitely generated graded
module of finite projective dimension. One has equalities t-reg(M) = e-reg(M) = c-reg(M). The
common value of these numbers is simply called the regularity of M , denoted reg(M).

Proof. e-reg(M) = c-reg(M): This equality is a consequence of graded local duality. We have that

Extd−iR (M,R)?(−a) ∼= Hi
m(M). Then,

c-reg(M) = max
i

{
topdeg(Hi

m(M)) + i
}

= max
i

{
topdeg(Extd−iR (M,R)?(−a)) + i

}
= max

i

{
topdeg(Extd−iR (M,R)?) + a+ i

}
= max

i

{
− botdeg(Extd−iR (M,R)) + a+ i

}
= max

i

{
− botdeg(Extd−iR (M,R))− (d− i)

}
+ (a+ d) = e-reg(M).

e-reg(M) ≤ t-reg(M): We will show that −botdeg(ExtiR(M,R)) ≤ max{j | βi,j 6= 0}.
Given a minimal free resolution P• →M , consider F • = HomR(P•, R). The module HomR(R(d), R)

is free and cyclic, generated by a map of degree −d, hence is isomorphic to R(−d). Thus, F • is of
the form:

· · · ←−
⊕
j∈Z

R(j)β2,j ←−
⊕
j∈Z

R(j)β1,j ←−
⊕
j∈Z

R(j)β0,j ←− 0

Then, we see that botdeg(F i) = −max{j | βi,j 6= 0}. Since ExtiR(M,R) is a quotient of a
submodule of F i, botdeg(ExtiR(M,R)) ≥ botdeg(F i). The desired inequality follows.
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e-reg(M) ≥ t-reg(M): Let t = maxi,j{j − i | βi,j 6= 0}; this is t-reg(M) without the (a + d).

We want to find a nonzero element of Ext of sufficiently low degree, namely in [ExtiR(M,R)]−t+i
for some i.

Pick (i, j) that witness the choice of t such that i is maximal. That is, pick (i, j) such that

βi,j 6= 0; j − i = t; j′ − i′ > t⇒ βi′,j′ = 0; i′ > i and j′ − i′ ≥ t⇒ βi′,j′ = 0.

We can do this since M has finite projective dimension. In particular, we have that the maximal
degree generator of Pi is in degree j, and Pi+1 has no generator of degree greater than j.

We claim that the projection π : Pi � R(−j) of Pi onto its generator of highest degree, as a
map in [HomR(Pi, R(−j))]0 ∼= [HomR(Pi, R)]−j , represents a nonzero class in ExtR(Pi, R) of degree
−j = −t+ i.

Let δ be the differential from Pi+1 → Pi, which is degree-preserving. By minimality, δ has
image in mPi. Since mR(−j) lives in degrees strictly greater than j, and the generators of Pi+1 live
in degrees at most j, π ◦ δ must map each generator of Pi+1 to 0. Thus, π represents a cocycle in
Hom(P•, R).

Let δ′ be the differential from Pi → Pi−1, which has image in mPi−1. Note that π splits. Suppose
that π factors through δ′. Then the identity on R(−j) factors through δ′:

Pi
δ′ //

π

$$

Pi−1

����
R(−j)
?�

OO

∼=
// R(−j)

But then, the image of the generator of R(−j) in Pi must map to something in mPi−1, which must
map into mR(−j). This is a contradiction. Thus, π does not factor through δ′; i.e., π is not a
coboundary in Hom(P•, R). We conclude that π represents the desired nonzero Ext class.

One usually encounters regularity in the context of standard graded polynomial rings. We
specialize to this case as a corollary.

Corollary 4.61. Let R = K[x1, . . . , xd] be a polynomial ring, with the degree of each xi equal to
one. If M is a finitely generated graded R-module, the regularity of M is equal to

reg(M) = max
i
{topdeg(TorRi (M,K))− i} = max

j
{topdeg(Hj

m(M)) + j}.

Remark 4.62. By taking i = 0 in the definition of t-reg, if R is a standard graded polynomial
ring, we see that M can be generated by elements of degree at most reg(M). This is the key to
many of the applications of regularity: it can be used to bound the degrees of generators.

Remark 4.63. If ϕ : R→ S is a map of graded rings such that S is module-finite over the image
of R, both are Gorenstein, and M has finite projective dimension over both, then reg(ϕM) =
c-reg(ϕM) = c-reg(M) = reg(M). This is not so clear from the description as t-reg(M).

The following corollary is also important to a number of applications. Recall that the Hilbert
function of a graded module M (e.g., a graded ring) is the function H(M, t) := dimK

(
[M ]t

)
.

If R is generated in degree one as a K-algebra, then there exists an integer-valued polynomial
P (M, t) ∈ Q[t] and some N ∈ N such that H(M,n) = P (M,n) for all n > N .
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Corollary 4.64. Let (R,m,K) be a Cohen-Macaulay graded ring generated over K in degree one.
If a(R) < 0, then the Hilbert function of R is a polynomial. That is, in the notation above,
H(R,n) = P (R,n) for all n ∈ N.

Proof. Let d = dim(R). Let (S, n,K) be a standard graded polynomial ring that surjects onto R,
and let D = dim(S). Since R has only one nonvanishing local cohomology module, we see that
reg(R) = a(R) + d < d. If we take a minimal graded free resolution P• of R as an S-module, its
length, pdS(R), is D−d. Since the regularity is less than d, this implies that every shift in the free
resolution is greater than −D.

We claim that H(S(−b), t) agrees with a polynomial in t for all t ∈ N if b < D. Recall that, for
all t ≥ 0,

H(S, t) =

(
t+D − 1

D − 1

)
=

(t+D − 1)(t+D − 2) · · · (t+ 1)

(D − 1)(D − 2) · · · 1

which agrees with a polynomial CD(t) that has roots −1,−2, . . . ,−(D− 1). Of course, H(S, t) = 0
for t < 0. Then,

H(S(−b), t) = H(S, t− b) =

{
CD(t− b) if t− b ≥ 0

0 if t− b < 0
=

{
CD(t− b) if t− b > −D
0 if t− b ≤ −D ,

where in the last equality we used the observation on the roots. If b < D, then t− b > −D for all
t ∈ N, which establishes the claim.

Now, since the Hilbert function of a direct sum is the sum of the Hilbert functions, each
free module Pi in the minimal resolution has a polynomial Hilbert function. Finally, H(M, t) =∑

(−1)iH(Pi, t) is then a polynomial function.

4.6 Advertisement for/translation to algebraic geometry

It doesn’t make much sense to cover scheme theory in detail in this course. We do, however, want to
explain the geometric meaning of local cohomology at least to the extent so that one can translate
geometric results into algebraic results and vice versa.

If X is a topological space, we can view the collection of open sets with inclusion maps as a
category; we denote this category as opens(X). Recall that a sheaf of abelian groups F on X
is a contravariant functor from opens(X) to the category of abelian groups such that, for any
U ∈ opens(X) and any open cover {Ui} of U ,

• if the image of α ∈ F(U) is zero in each F(Ui), then α = 0, and

• if {αi ∈ F(Ui)} are such that for all pairs i, j, the images of αi and αj agree in F(Ui ∩ Uj),
then there is some α ∈ F(U) such that for each i, the image of α in Ui is αi.

In short, a sheaf associates to each open set U an abelian group F(U), which in practice often
are naturally functions on U , in a way that behaves well with respect to restriction, and with
respect to taking open covers. The elements of F(U) are called sections.

Example 4.65. To any topological space X and abelian group A, we can define a constant sheaf
AX given by AX(U) = A⊕µ(U), where µ(U) is the number of connected components of U . We
think of AX(U) as the locally constant functions from U to A; we get the direct sum since locally
constant functions can be specified independently on different connected components of a space.
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The global sections functor from sheaves on a space X to abelian groups is given by Γ(X,F) =
F(X). One can, and in a Hartshorne class does, make sense of the notions of kernel and cokernel of
a map of sheaves, injective sheaves, and injective resolutions of sheaves. One proves that Γ(X,−)
is left-exact, and defines sheaf cohomology as a right-derived functor Hi(X,−) := RiΓ(X,−). This
machinery is partly motivated by the following.

Theorem 4.66. Let X be a paracompact and locally contractible topological space, e.g., a CW
complex. Let A be an abelian group. Then, Hi

sing(X;A) ∼= Hi(X,AX). That is, singular cohomology
can be computed as sheaf cohomology of the constant sheaf.

By the definition of sheaf, sections are determined locally, in the sense that the global sections
can be recovered from any open cover. One can ask to what extent the global sections can be
recovered from “most” of an open cover, like an open cover of X \ Z for some closed subset Z.

Definition 4.67. Let X be a topological space, F be a sheaf on X, U ⊆ X be open, and Z = X \U
closed. The group of sections of F with support in Z is ΓZ(X,F) := ker(F(X) → F(U)), where
the map is the restriction map coming from the definition of sheaf.

One shows that this functor is also left exact, and then poses the following.

Definition 4.68. Let X be a topological space and Z = X \ U closed. The local sheaf cohomol-
ogy functors with support in Z are the right derived functors of ΓZ(X,−), namely, Hi

Z(X,−) :=
RiΓZ(X,−).

If U ⊆ X is open and Z = X \ U , then given an injective resolution of sheaves F → E•, there
is a short exact sequence of complexes

0→ ΓZ(X, E•)→ Γ(X, E•)→ Γ(U, E•)→ 0,

which yields a long exact sequence of cohomology:

0→ H0
Z(X,F)→ H0(X,F)→ H0(U,F)→ H1

Z(X,F)→ H1(X,F)→ H1(U,F)→ H2
Z(X,F)→ · · · .

In light of this sequence and the theorem above, the following is not surprising.

Theorem 4.69. Let X be a paracompact and locally contractible topological space, e.g., a CW
complex. Let Z ⊆ X be closed. Let A be an abelian group. Then, Hi

sing(X,X \Z;A) ∼= Hi
Z(X,AX).

Now, let R be a noetherian ring, and X = Spec(R). A basis of open sets for the topological space

X is given by Uf = Spec(R) \ V(f) ∼= Spec(Rf ). Any R-module M has a sheafification, M̃ , which

is the unique sheaf on X such that for each f ∈ R, M̃(Uf ) ∼= Mf . In particular, Γ(X, M̃) = M .
The fact that this prescription is compatible with the sheaf axioms, even when only considering
open sets in the basis, requires a proof, but can be found in Mel’s 614 notes. The sheafification of
R is called the structure sheaf , and often denoted OX := R̃. We note that if R is a domain, then
the sections of the structure sheaf can be computed as a subset of the fraction field K:

OX(U) =
⋂
p∈U

Rp = {f ∈ K | ∀p ∈ U,∃a ∈ R, b ∈ R \ p : f = a/b} .

Proposition 4.70. Let R be a noetherian ring, and X = Spec(R). Let Z = V(I) be closed. Then

ΓZ(X, M̃) ∼= ΓI(M) and Hi
Z(X, M̃) ∼= Hi

I(M) for all i ≥ 0.
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Proof. By definition, ΓZ(X, M̃) ∼= ker
(
M → M̃(U)

)
. Write I = (f1, . . . , ft), so U = ∪iUfi . An

element of M maps to zero in M̃(U) if and only if it maps to zero in each M̃(Ufi). But this is
equivalent to being killed by a large power of each fi; equivalently a large power of I. This takes
care of the first assertion.

For the second, we use (without proof) the fact that if E is injective, then Ẽ is an injective
sheaf; this uses noetherianity. Then, if M is an R-module, and M → E• is an injective resolution,

Hi
I(M) ∼= H i

(
ΓI(E

•)
) ∼= H i

(
ΓZ(X, Ẽ•)

) ∼= Hi
Z(X, M̃).

Proposition 4.71. Let R be a noetherian ring, and X = Spec(R). Let Z = V(I) be closed, and
U = X \ Z. Let M be an R-module. Then, there is a medium exact sequence

0→ H0
I(M)→M → Γ(U, M̃)→ H1

I(M)→ 0,

and isomorphisms for all i ≥ 2
Hi
I(M) ∼= Hi−1(U, M̃).

Proof. Since Γ(X, M̃) = M for all modules M , the LHS as a functor of M is exact. In particular,

if M → E• is an injective resolution of M , the complex Γ(X, Ẽ•) has homology only in the zeroth

position, so Hi(X, M̃) = 0 for i > 0.
Applying this vanishing and the previous proposition to the LES above gives the result.

Corollary 4.72. Let R be a noetherian ring, and X = Spec(R). Let Z = V(I) be closed, and

U = X \ Z. If depthI(M) ≥ 2, then any section of M̃ on U extends uniquely to a section on X,
and conversely.

Example 4.73. Let R = K[x, y] and m = (x, y). By the previous theorem, since H0
m(R) =

H1
m(R) = 0, there is an isomorphism R ∼= OSpec(R)(Spec(R) \ {m}). That is, if f ∈ K(x, y) is such

that for any p 6⊇ m, f can be written with a denominator not in p, then f ∈ R. This is clear, since
R is a UFD, so any f ∈ K can be written uniquely up to units in lowest terms as a quotient g/h of
elements of R. But then h is contained in some height 1 prime p, and g/h 6= a/b for any a, b with
b /∈ p, so f /∈ Rp.

Example 4.74. Let S =
K[x, y, u, v]

(xu− yv)
, and I = (x, y). By the previous theorem, since H1

m(R) 6= 0,

some element of OSpec(S)(Spec(S) \ V(I)) does not lie in S. Indeed, the element
v

x
=
u

y
∈ frac(S)

is well-defined on Spec(S) \ V(I), but is not equal to an element of S.

There are especially nice connections between graded local cohomology and projective varieties.
One way to describe projective space Pn is by its graded structure, Pn = Proj(S), where S =
K[x0, . . . , xn], and Proj calls for the homogeneous primes of S other than m. This structure
accounts for its nice compactness properties. Alternatively, Pn can be described as a bunch of
affine spaces glued together, which allows it to be compared to other classes of varieties. That is:
Pn =

⋃n
i=0 Ani , where

Ani = {p ∈ Proj(S) | xi /∈ p} ∼= Spec (K [x0/xi, . . . , xn/xi]) .

Since the Ani ’s form an open cover, this also gives a recipe for a structure sheaf OPn , setting
OPn(Ani ) = K [x0/xi, . . . , xn/xi]. Following this philosophy gives an analogue of sheafifications of
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modules on affine varieties. We say that M is a coherent sheaf on Pn if for each i = 0, . . . , n,
the restriction of M to each open set Ani ⊆ Pn agrees with the sheaf M̃ on Ani for some finitely
generated module M .

Coherent sheaves, and the structure sheaf of Pn can also be characterized using the graded
structure. If f is homogeneous, let Wf = {p ∈ Proj(S) | f /∈ p}. The set of Wf ’s forms a basis of
open sets for Pn.

Definition 4.75. Let S = K[x0, . . . , xn]. If M is a graded S-module, we define the graded sheafi-

fication
˜̃
M to be the sheaf on Pn such that

˜̃
M(Wf ) = [Mf ]0 for all homogeneous f .

We opt here for such egregious notation to avoid any confusion with the sheafification M̃ , which
is a sheaf on An+1.

Example 4.76. One has
˜̃
S ∼= OPn . Indeed, granted the assertion that both sides are sheaves

on Pn, it suffices to check the equivalence on an open cover. We compute
˜̃
S(Ani ) = [Sxi ]0

∼=
K[x0/xi, . . . , xn/xi], as required.

The following theorem of Serre is worth noting.

Theorem 4.77. Let S = K[x0, . . . , xn]. Every coherent sheaf on Pn is of the form
˜̃
M for some

finitely generated graded S-module M , and conversely. One has
˜̃
M ∼= ˜̃

N if and only if there is some
t ∈ Z such that [M ]≥t ∼= [N ]≥t.

We can now state the relationship between graded local cohomology and sheaf cohomology of
projective varieties.

Theorem 4.78. Let S = K[x0, . . . , xn], with homogeneous maximal ideal m, and let M be a finitely
generated graded S-module. Then, for each t ∈ Z, there is medium exact sequence

0→ [H0
m(M)]t → [M ]t → Γ(Pn, ˜̃M(t))→ [H1

m(M)]t → 0,

and isomorphisms for all i ≥ 2

[Hi
m(M)]t ∼= Hi−1(Pn, ˜̃M(t)).

Proof. One can argue analogously to the affine version, using modules and resolutions consisting
of injectives in the category of graded modules. Instead, we will use the geometry analogue of the
Fundamental Theorem of Local Cohomology. We can prove the medium exact sequence with using
neither though.

Let M be a graded module. Then,

[Č•(x;M)]0 = 0→ [M ]0
δ1

−→
⊕
i

[Mxi ]0
δ2

−→
⊕
i,j

[Mxixj ]0 → · · · .

By definition, ker(δ1) = [H0
m(M)]0. We compute

ker(δ2) = ker
(⊕

i

Γ(Ani ,
˜̃
M)→

⊕
i,j

Γ(Ani ∩ Anj ,
˜̃
M)
)

= Γ(Pn, ˜̃M),

where the last equality comes from the definition of sheaf. Stitching together, we get the medium
exact sequence in the statement.
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For the higher cohomologies, we use the fact that sheaf cohomology can be computed by a Čech
complex on an affine cover: for a sheaf F ,

Ht(Pn,F) = Ht

0→
⊕
i

Γ(Ani ,F)→
⊕
i,j

Γ(Ani ∩ Anj ,F)→ · · · → Γ(∩iAni ,F)→ 0

 .

Picking F =
˜̃
M , this gives

Ht(Pn, ˜̃M) = Ht

0→
⊕
i

[Mxi ]0 →
⊕
i,j

[Mxixj ]0 → · · · → [Mx0···xn ]0 → 0

 ,

which is a truncation of the Čech complex [Ȟ(x;M)]0. In particular, for i ≥ 2, we compute

[Hi
m(M)]0 and Hi−1(Pn, ˜̃M) as cohomology of the same pair of maps.
For other t ∈ Z, the statement follows by shifting degrees.



Chapter 5

Mayer-Vietoris and connectedness
results

5.1 Worksheet on Mayer-Vietoris sequence

1. Let R be a ring, M an R-module, and a, b, c ideals of R.

(a) Show that if a ⊆ c, there is an injective map Γc(M)→ Γa(M), functorial in M .

(b) Show that

0→ Γa+b(M)→ Γa(M)⊕ Γb(M)→ Γa∩b(M)

is left exact.

(c) Show that if R is noetherian, and M = E is injective, then the sequence above is exact
on the right.

(d) Show that if R is noetherian, then there is a LES

0→ H0
a+b(M)→ H0

a(M)⊕H0
b(M)→ H0

a∩b(M)→ H1
a+b(M)→ H1

a(M)⊕H1
b(M)→ H1

a∩b(M)→ · · ·

This is called the Mayer-Vietoris sequence of local cohomology.

2. (a) Compute the cohomological dimension of I = (x, y) ∩ (u, v) in K[x, y, u, v].

(b) Compute the cohomological dimension of J = (x, y, z) ∩ (u, v, w) in K[x, y, z, u, v, w]

(c) Based on the previous computations and the number of generators of the ideals, give a
range of possible values for ara(I) and ara(J).

Definition 5.1. If (R,m, k) is a local ring, the punctured spectrum of R is the topological space
Spec◦(R) := Spec(R) \ {m}.

3. Let (R,m, k) be a local ring.

(a) Prove that the (unpunctured) spectrum of R, Spec(R), is connected as a topological
space.

79
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(b) Prove that Spec◦(R) is disconnected (as a topological space) if and only if there exist
ideals a, b ⊆ R, neither of which m-primary, such that

√
a ∩ b =

√
(0) and

√
a + b = m.

(c) Show that if depth(R) ≥ 2, then Spec◦(R) is connected.

(d) Show that if R is Cohen-Macaulay, and height(I) > 1, then Spec(R)rV(I) is connected.

4. We will also use another long exact sequence. Let R be a noetherian ring, I an ideal, and
x ∈ R. Then for any R-module M ,

0→ H0
I+(x)(M)→ H0

I(M)→ H0
I(Mx)→ H1

I+(x)(M)→ · · · .

(a) Show that 0→ ΓI+(x)(E)→ ΓI(E)→ ΓI(Ex)→ 0 is exact for any injective module E.

(b) Prove the existence of the long exact sequence above.

(c) Show that if I = (f1, . . . , ft), then there is a short exact sequence of complexes

0→ Č•(f ;Mx)[−1]→ Č•(f, x;M)→ Č•(f ;M)→ 0.

(d) Give a second proof of the long exact sequence above.

5. Compute ara(I) and ara(J) from #2.

5.2 The Hartshorne-Lichtenbaum vanishing theorem

We will be able to use the Mayer-Vietoris sequence to prove even stronger results once we have
established the following vanishing theorem for local cohomology.

Theorem 5.2 (Hartshone-Lichtenbaum vanishing). Let (R,m, k) be a complete local domain of
dimension d. If

√
I 6= m, then Hd

I(R) = 0.

Combined with Grothendieck nonvanishing, we have that cd(J) = d if and only if J is m-
primary; in the other case, “<” holds. The rough outline of the proof is

1. Reduce to the case p is a prime with dim(R/p) = 1,

2. Reduce to the case that R is Gorenstein,

3. Compute the local cohomology via symbolic powers: Hd
p(R) = lim−→ExtdR(R/p(t), R).

We will use the following lemma in step 2.

Lemma 5.3. Let R be a normal domain, and S = R[s] a domain generated by one integral element
over R. Then, the minimal monic polynomial f(x) of s over the fraction field of R has coefficients
in R, and S ∼= R[x]/(f).

Proof. Let K = frac(R). Let g(x) be some equation of integral dependence for s over R. Viewing
g(x) as an element of K[x], we find that f(x)|g(x), so all roots of f (in some fixed algebraic closure
of K) are roots of g, and hence integral elements over R. The coefficients of f are elementary
symmetric functions of the roots, hence are integral over R, and lie in K. Since R is normal, we
get that f(x) ∈ R[x].

Now, we claim that (f) generates the kernel of R[x] → R[u]. Since f(x) is monic, we can run
the division algorithm on any element h(x) ∈ R[x] by f(x) to write h(x) = f(x)a(x) + b(x), for
some unique a(x), b(x) ∈ R[x] such that deg(b) < deg(f). But then we have 0 = h(s) = b(s), which
that f(s) is the minimal polynomial of s over K unless b = 0. This establishes the claim.
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To prepare for step 3, we prove a couple more preliminary results.

Theorem 5.4 (Chevalley’s theorem). Let (R,m, k) be a complete local ring, and E = ER(k). Let
{It} be a descending chain of ideals of R. Then

⋂
t It = 0 if and only if for each n there is a t such

that It ⊆ mn.

Proof. “If” is an immediate consequence of the Krull intersection theorem.
Set Vt,n = (It + mn)/mn ⊆ R/mn. Since R/mn is artinian, for any n, the descending chain of

ideals {Vt,n}t must stabilize: call this stable ideal V∞,n. The surjections R/mn+1 � R/mn induce
surjections Vt,n+1 � Vt,n for all t, n, and in particular, V∞,n+1 � V∞,n. By taking inverse limits
we obtain an ideal V = lim←−n V∞,n ⊆ lim←−R/m

n = R. We see that

V =
⋂
t,n

It + mn =
⋂
t

(⋂
n

It + mn
)

=
⋂
t

It = 0.

Since the maps in the inverse limit system are surjective, a nonzero element of V∞,n yields a nonzero
element of V , which is a contradiction. Then, each V∞,n = 0, so Vt,n = 0 for some large t; that is,
It ⊆ mn for some large t.

Example 5.5. The completeness hypothesis is necessary. Let k be a field of characteristic zero, and
(R,m, k) the localization of k[x, y] at (x, y). Set en(x) =

∑n
i=1

xi

i! ∈ R, and e(x) =
∑∞

i=1
xi

i! ∈ R̂.
Consider the sequence of ideals It = (y − et−1(x), yt, xt). We claim that {It}t is a descending
sequence of ideals with

⋂
t It = 0, but {It}t is not cofinal with {mn}n. The latter statement is clear,

since y − et−1(x) /∈ m2. It is clear that It+1 ⊆ It for all t. Note that ItR̂ = (y − e(x), xt, yt) for all
t. It is then clear that

⋂
t(ItR̂) = (y − e(x))R̂, so

⋂
t It ⊆ (y − e(x))R̂ ∩R = (0).

Corollary 5.6. Let (R,m, k) be a complete local domain, and p be a prime with dim(R/p) = 1.
Then the sequences of ideals {p(m)}m∈N and {pn}n∈N are cofinal.

Proof. Clearly pn ⊆ p(n) for all n, so we need to show that for each n, there is some m such that
p(m) ⊆ pn.

Since V(p) = {p,m}, every pn = p(n) ∩ In for some m-primary ideal In. By Krull intersection,
(
⋂
p(n))Rp ⊆

⋂
ptRp = 0, so

⋂
p(n) = 0, since R is a domain. Since In is m-primary, there is some

m, WLOG larger than n, such that p(m) ⊆ In. Then p(m) ⊆ In ∩ p(n) = pn, as required.

We now begin the proof of the theorem.

Proof of Hartshorne-Lichtenbaum:
Reduction to case dim(R/p) = 1, p prime: Let I be an ideal maximal wrt the property that

Hd
I(R) 6= 0 and I is not m-primary. If R/I is not a 1-dimensional domain, there is some x /∈ I such

that dim(R/(I + (x))) ≥ 1. Now use the LES from the worksheet:

Hd
I+(x)(R)→ Hd

I(R)→ Hd
Ix(Rx)→ 0.

Since R is a local domain, dim(Rx) < d, and then Hd
I(R) 6= 0 implies Hd

I+(x)(R) 6= 0. This

contradicts the maximality of our counterexample. Thus, we can assume thatR/I is a 1-dimensional
domain.

Reduction to case R is Gorenstein: Our goal in this step is to find some complete Gorenstein
local domain B such that B ⊆ R is module-finite, and p =

√
qR for some prime q = p∩B ∈ Spec(B)

with dim(B/q) = 1. Once we have this, if we know the theorem for q ⊆ B, then

dim(R) = dim(B) > cd(q, B) ≥ cd(q, R) = cd(qR,R) = cd(p, R),



82 CHAPTER 5. MAYER-VIETORIS AND CONNECTEDNESS RESULTS

establishing the theorem for p ⊆ R.
Since R is complete, and hence the image of a Cohen-Macaulay ring, we have the equality

d− 1 = dim(R)− dim(R/p) = height(p). Let V be a coefficient field or coefficient DVR for R. By
a prime avoidance argument, we can pick x1, . . . , xd−1 ∈ p such that height(x1, . . . , xd−1) = d− 1,
and if (V, pV ) is a DVR and p ∈ p, also x1 = p. Pick xd ∈ p that is not in any other minimal prime
of (x1, . . . , xd−1), so

√
(x1, . . . , xd−1, xd) = p.

We want to pick y such that V Jx1, . . . , xd−1, yK ⊆ R is module-finite. By NAK, it suffices to
find y such that the maximal ideal of this power series ring expands to an m-primary ideal of R. If
V is a field, or a DVR (V, pV ) and p ∈ p, picking any y /∈ p makes x1, . . . , xd−1, y a SOP for R, so
this works. If V is a DVR (V, pV ) and p /∈ p, then x1, . . . , xd−1, p is a SOP for R, so set y = 0.

Now, if A = V Jx1, . . . , xd−1, yK, then B = A[xd] is module-finite over A, since xd ∈ R. The
unique maximal ideal of B is m ∩ B, so it is local. By module-finiteness, B is complete wrt the
topology of A, which agrees with the m ∩B-adic topology, so it is complete lcoal domain. Since A
is regular, and hence normal, the lemma above ensures that B ∼= A[x]/(f) for some regular element
f . Thus B is a complete intersection, and hence Gorenstein.

Now, B ⊆ R and B/(p ∩ B) ⊆ R/p are module-finite, so dim(B) = dim(R), and dim(B/(p ∩
B)) = dim(R/p) = 1. By construction, (x1, . . . , xd) ⊆ (p ∩B)R, so

√
(p ∩B)R = p, as required.

Proof in case R is Gorenstein, p prime, dim(R/p) = 1: By the corollary above, we know
that the symbolic powers of p form a cofinal system with with powers of p. Thus, Hd

p(R) =

lim−→ExtdR(R/p(t), R). We claim that every term in the direct system is zero. Indeed, by local duality,

ExtdR(R/p(t), R) ∼= H0
m(R/p(t))∨. But m /∈ Ass(R/p(t)), so depth(R/p(t)) > 0, hence H0

m(R/p(t)), as
required.

5.3 Connectivity results

It is clear that the punctured spectrum of a domain is connected: for any cover of the punctured
spectrum, one of the covering sets must contain (0), and hence must contain the whole punctured
spectrum. One might hope that if R is close to being a domain in some sense, then the punctured
spectrum of R is still connected. If R is complete, then it is the quotient of a regular ring, hence
of a domain. Thus, one could sensibly ask whether if a domain quotiented out by sufficiently few
equations has a connected punctured spectrum. This turns out the have a positive answer.

Theorem 5.7 (Faltings’ connectedness theorem). Let (R,m, k) be a complete local domain of
dimension d, and I an ideal with arithmetic rank at most d− 2. Then Spec◦(R/I) is connected.

Proof. Let a and b be ideals such that V(a) and V(b) give a (possibly improper) disconnection of
V(I) in Spec◦(R). That is, a and b such that

√
a ∩ b =

√
I and

√
a + b = m. We will show that

either a or b is m-primary.
We have that Hd

a∩b(R) = Hd
I(R) = 0, and Hd−1

a∩b (R) = Hd−1
I (R) = 0, by the hypothesis on

arithmetic rank. The Mayer-Vietoris sequence reads

· · · → 0→ Hd
a+b(R)→ Hd

a(R)⊕Hd
b(R)→ 0,

and, since Hd
a+b(R) = Hd

m(R) 6= 0, we must have that either Hd
a(R) 6= 0 or Hd

b(R) 6= 0. By HLVT,
this means either a or b is m-primary, so in fact the disconnection is improper.

We now want to apply this statement to intersections of projective varieties. First, we give a
couple of lemmas that will give us an appropriate complete domain to work with.
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Lemma 5.8. Let K be an algebraically closed field, and R and S be two finitely generated K-
algebras that are domains. Then R⊗K S is also a domain.

Proof. Let L = frac(S). First, we will show that R ⊗K L is a domain. Write R = K[x]/(h). If
R⊗K L is not a domain, there are two polynomials in L[x] whose product lies in (h). We can write
this as a system of equations:(∑

fαx
α
)(
gβx

β
)

=
∑(∑

rγx
γ
)(
hi,ζx

ζ
)
,

where each greek letter is a multiindex. By expanding and collecting coefficients of monomials,
this gives a system of polynomial equations, where the fα’s, gβ’s, and rγ ’s are all variables. This
system of equations has coefficients in K. If there is a solution over L, then 1 is not in the ideal
of equations over L[{fα, gβ, rγ}], so 1 is not in the ideal of equations over K[{fα, gβ, rγ}]. By the
Nullstellensatz, there must be a solution over K, contradicting that R is a domain.

Now, since R is flat over K, we have that R ⊗K S ⊆ R ⊗K L. Thus, R ⊗K S must also be a
domain.

Lemma 5.9. Let (R,m,K) be a graded domain. Then R̂m is also a domain.

Proof. Since {[R]≥t} and {mt} form cofinal sequences of ideals, we can consider R̂m as the com-
pletion with respect to the former topology. Now, let f = fd + f ′ and g = ge + g′ be elements of
R̂m, where fd is the lowest degree term of f and ge is the lowest degree term of g. Then fg ≡ fdge
modulo [R]>d+eR̂m. Since fdge is nonzero in R, hence in R/[R]>d+e, we see that fg must be nonzero
as well.

Theorem 5.10 (Fulton-Hansen connectedness theorem). Let K be an algebraically closed field,
and X,Y ⊆ Pn be irreducible subvarieties. If dim(X) + dim(Y ) > n, then X ∩ Y is connected.

Proof. Let p, q ⊂ K[x0, . . . , xn] be the defining homogeneous primes of X and Y . We then have
Proj(K[x0, . . . , xn]/(p + q)) = X ∩ Y . We can write

R ∼=
K[x0, . . . , xn]

p + q
∼=
K[x0, . . . , xn, y0, . . . , yn]

p + q′ + ∆
,

where q′ is the copy of q with the x-variables replaced with y-variables, and ∆ = (x0 − y0, . . . , xn − yn).

By the last two lemmas, S =
KJx0, . . . , xn, y0, . . . , ynK

p + q′
is a domain. Since dim(R) = dim(X) +

1 + dim(Y ) + 1 ≥ n + 3, and ara(∆) ≤ n + 1 the punctured spectrum of S/∆ is connected by
Faltings’ connectedness theorem.

Now, if X ∩ Y is disconnected, there are homogeneous ideals a, b ⊆ K[x0, . . . , xn, y0, . . . , yn]
such that

√
a + b = m,

√
a + b = p + q′ + ∆, and neither a nor b are m-primary. But then the

expansions of these ideals to KJx0, . . . , xn, y0, . . . , ynK satisfy the same conditions, contradicting the
connectedness of the punctured spectrum of S/∆.



84 CHAPTER 5. MAYER-VIETORIS AND CONNECTEDNESS RESULTS



Chapter 6

Local cohomology in positive
characteristic

6.1 Kunz’ theorem and the Peskine-Szpiro functors

Let R be a ring of positive prime characteristic p. The Frobenius endomorphism is the map
F : R→ R given by F (r) = rp. This is a ring endomorphism of R: it clearly respects multiplication,
and if r, s ∈ R,

F (r + s) = (r + s)p =

p∑
i=0

(
p

i

)
risp−i = rp + sp = F (r) + F (s),

since p |
(
p
i

)
for 0 < i < p. We write F e for the e-th iterate of Frobenius, and call it the eth Frobenius

map for short.

It is easy to see that

• F is injective if and only if F e is injective for all e if and only if R is reduced.

• The Frobenius endomorphism extends to the Frobenius map on any localization Rp for p ∈
Spec(R).

• If R is noetherian, and F is surjective, then R is a field.

• The image of an ideal I under F e is an ideal I [pe], and if I = (a1, . . . , at), then I [pe] =
(ap

e

1 , . . . , a
pe

t ).

If R is a domain, and K its fraction field, fix an algebraic closure K. Every element r ∈ R has
a unique pth root in K, since if xp = yp = r in K, then 0 = xp − yp = (x− y)p, so x− y = 0. It is
easy to see that

R1/p := {r1/p ∈ K | r ∈ R}

is a subring of K. Furthermore, the Frobenius map on R1/p is injective with image R, so R ∼= R1/p,
via the map sending r 7→ r1/p. We define R1/pe in the same way.

If R is reduced, then by working with the total ring of fractions of R, which is a product of
fields, we can construct R1/pe in the same way. These rings give as another useful perspective on
the Frobenius map: The following diagram commutes:

85
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R
⊆ //

1 ∼=
��

R1/pe

F e ∼=
��

R
F e

// R.

We can use this in many situations to identify the Frobenius map with the inclusion R ⊆ R1/pe .
Like any ring homomorphism, the Frobenius induces two functors on modules: restriction of

scalars, and base change. Since the source and target of Frobenius are the same, these can get a
bit disorienting. We will write F : Rs → Rt for the Frobenius, where Rs denotes the source copy
of R, and Rt denotes the target copy of R (which coincidentally are the same!).

Definition 6.1. Let M be an R(= Rt)-module. Then M1/pe := F eM is the R(= Rs)-module
obtained from M by restriction of scalars along the eth Frobenius map.

Let’s unpackage this definition. If M is an R = Rt-module, then F eM agrees with M as an
abelian group. Thus, we can write F eM = {m̃ | m ∈ M} with addition m̃ + ñ = m̃+ n. The

R = Rs-action is given by r · m̃ = F̃ (r)m = r̃pem. If we replace the purely decorative˜ ’s with
purely decorative 1/pe ’s, we get

• F eM = M1/pe = {m1/pe | m ∈M},

• m1/pe + n1/pe = (m+ n)1/pe ,

• rm1/pe = (rp
e
m)1/pe .

We emphasize that the 1/pe ’s are just formal, as opposed to the case of a ring where this took place
inside a (product of) field(s). However, the two structures do agree in that case.

Some other notations for this construction are eM and F e∗ (M).

Example 6.2. Let K be a perfect field, and R = K[x, y]. Let us compute the R-modules R1/pe .
We have R1/pe = K[x1/pe , y1/pe ] as an overring of R. For any polynomial f(x1/pe , y1/pe) ∈ R1/pe ,
collect the monomials by the congruence classes of their exponents modulo 1, to write

f(x1/pe , y1/pe) =

pe−1∑
i,j=0

xi/p
e
yj/p

e
fi,j(x, y).

This expresses any f uniquely as an R-linear combination of {xi/peyj/pe | 0 ≤ i, j ≤ pe − 1}, so
R1/pe is a free module on this basis. Consequently, F e is flat: the target R is a free module over
the source R.

Example 6.3. The previous example generalizes to K[x1, . . . , xn] and KJx1, . . . , xnK: for each ring
R, the module R1/pe is free, generated by the monomials with each exponent bounded by pe−1

pe .

Example 6.4. Let S = F2[x2, xy, y2]. Let us compute the S-module S1/2. We have S1/2 =
F2[x,

√
xy, y] as an overring of S. We claim that

S1/2 ∼= S ⊕ S√xy ⊕ (Sx+ Sy)⊕ (Sx
√
xy + Sy

√
xy)

is a decomposition of S1/2 into indecomposable S-modules. Indeed, we have that S1/2 = F2[x, y]⊕√
xy F2[x, y] (monomials that are/aren’t multiples of

√
xy), and F2[x, y] = S ⊕ (Sx + Sy) (even
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and odd degree parts), so the direct sum decomposition above is valid. The modules (Sx + Sy)
and (Sx

√
xy+ Sy

√
xy) are indecomposable, since they are both isomorphic to the ideal (x2, xy)S.

In particular, S1/2 is not free. Consequently, F is flat: the target S is not a flat module over the
source S.

We note that the assignment M 7→ M1/pe is functorial, and is an exact functor. However, it
does not necessarily take free modules to free modules.

Along these lines, we obtain an Frobenius action on local cohomology. For any ring map
ϕ : R → S, we get an R-module map ϕ : R → ϕS, and, for an ideal I and integer i, an R-module
map

Hi
I(R)

ϕ−→ Hi
I(ϕS) = Hi

ϕ(I)(S).

In particular, for the Frobenius map F e : Rs → Rt, we get a map

Hi
I(R) = Hi

I(Rs)
F e

−→ Hi
I[pe](Rt) = Hi

I[pe](R) = Hi
I(R),

since
√
I [pe] =

√
I. To compute with Čech cohomology, we note that this is the map induced by

applying the Frobenius map to the Čech complex on a generating set for I.

Definition 6.5. The Frobenius action on local cohomology is the map described above.

Example 6.6. Let R = k[x, y]. The Frobenius action F e on H2
m(R) = Ȟ2(x, y;R) is given by

F e
(
[ f
xnyn ]

)
=
[ fp

e

xpenypen

]
.

We note that if R is graded, and I homogeneous, so that Hi
I(R) is graded, the Frobenius action

satisfies the rule F e
(
[Hi

I(R)]d
)
⊆ [Hi

I(R)]ped.
The other functor coming from Frobenius is the one corresponding to base change. We will

stick with the notation F : Rs → Rt for the Frobenius, where Rs denotes the source copy of R, and
Rt denotes the target copy of R (which coincidentally are the same!).

Definition 6.7. The Peskine-Szpiro functors are the functors Fe from R(= Rs)-modules to R(=
Rt) modules given by base change along the eth Frobenius map. That is, Fe(M) = Rt⊗Rs M , with
the structure coming from Rt.

To make sense of this definition, we observe the following.

• Fe(R) ∼= R: Rt ⊗Rs Rs as an Rt-module is just Rt = R.

• Fe takes the map ·r : R→ R to ·rpe : R→ R: 1⊗ 1 ∈ Rt ⊗Rs Rs maps to 1⊗ r = rp
e ⊗ 1.

• The functors Fe are right exact.

• If Ra
A−→ Rb →M → 0 is a presentation of M , with A = [aij ], then Ra

A[pe]

−→ Rb → Fe(M)→ 0

is a presentation of Fe(M), where A[pe] = [ap
e

ij ].

• In particular, Fe(R/I) = R/I [pe].

As we have seen in the examples, the Frobenius map is not always flat: R1/pe is not always flat
over R. The following theorem of Kunz characterizes when this happens.

Theorem 6.8 (Kunz’ theorem). Let R be a noetherian ring of positive characteristic. Then R is
regular if and only if the eth Frobenius map on R is flat for some (equivalently, all) e; i.e., R1/pe

is a flat R-module for some (equivalently, all) e.

We will prove a more general version of the “⇒” direction below.
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6.2 Peskine-Szpiro vanishing

The statement of Kunz’ theorem describes when the Peskine-Szpiro functors are exact: indeed,
since these are given by extension of scalars, this happens if and only if the map is flat, which
happens if and only if R is regular. It turns out that for all local rings of positive characteristic,
the Peskine-Szpiro functors are exact on the category of modules of finite projective dimension (we
will give a precise statement soon). We prepare for this with a lemma.

Lemma 6.9 (Acyclicity lemma). Let R be a local ring, and 0→Mn → · · · →M0 → 0 be a complex
of R-modules with nonzero homology. Let s = max{i | Hi(M•) 6= 0}.

If depth(Mi) ≥ i for all i ≥ 1, then either s = 0 or depth(Hs(M•)) ≥ 1.

Proof. Suppose s ≥ 1 and depthHs(M•) = 0. Let Zi = ker(Mi →Mi−1) and Bi = im(Mi+1 →Mi).
There are short exact sequences

0→ Bs → Zs → Hs(M•)→ 0 and 0→ Bi+1 →Mi+1 → Bi → 0 for s ≤ i ≤ n− 1.

Since Zs ⊆ Ms and depthMs ≥ s ≥ 1, there is a nonzerodivisor on Ms, hence on Zs, so we must
also have depthZs ≥ 1. By the first sequence, we find that depthBs = 1. Applying the Depth
Lemma to the latter short exact sequences inductively gives depthBi = i− s+ 1 for s ≤ i ≤ n− 1.
Since Bn−1 = Mn, depthMn = n− s ≤ n− 1, which is a contradiction.

Theorem 6.10. Let R be a local ring of positive characteristic, and M be a finitely generated module
of finite projective dimension. If P• →M is a minimal free resolution of M , then Fe(P•)→ Fe(M)
is a minimal free resolution of Fe(M).

Proof. The homology of Fe(P•) is TorRi (R1/pe ,M) = 0, with the structure given by identifying the
left argument with R. It suffices to show that TorRi (R1/pe ,M) = 0 for i > 0. Let s be the highest
nonvanishing such i. Let p ∈ Ass(TorRs (R1/pe ,M)). Take F• → Mp a minimal free resolution
over Rp, and C• = Fe(F•). By choice of p, depthRp

Hs(C•) = 0, and Hi(C•) = 0 for i > s. By
Auslander-Buchsbaum, Fi = 0 for i > depth(Rp). Now, by the Acyclicity Lemma, s = 0.

Corollary 6.11. Let R be a local ring of positive characteristic. If

0→ A→ B → C → 0

is a short exact sequence of modules of finite projective dimension, then

0→ Fe(A)→ Fe(B)→ Fe(C)→ 0

is exact as well.

Proof. If F ′• → A, F• → B, and F ′′• → C are the minimal free resolutions, there is a short exact
sequence of complexes

0→ F ′• → F• → F ′′• → 0,

and another
0→ Fe(F ′•)→ Fe(F•)→ Fe(F ′′• )→ 0.

By the previous theorem, the LES of homology of the latter is just

0→ Fe(A)→ Fe(B)→ Fe(C)→ 0.
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Corollary 6.12. If R is a regular ring of positive characteristic, then F e is flat for all e.

Proof. We can test flatness on the inclusions of ideals into the ring. But, by Auslander-Buchsbaum-
Serre and the previous theorem, we have that

0→ Fe(I)→ Fe(R)→ Fe(R/I)→ 0

is exact.

We can apply this theorem to give a vanishing theorem on local cohomology.

Theorem 6.13. Let R be a local ring of positive characteristic, and I be an ideal of R. Then
cd(I,R) ≤ pdR(R/I).

Proof. The statement is vacuous unless I has finite projective dimension, so we assume that. We
note that the sequence of ideals I [pe] is cofinal with the sequence of powers of I. Thus, we can
compute Hi

I(R) = lim−→ExtiR(R/I [pe], R). Since pdR(R/I [pe]) = pdR(Fe(R/I)) ≤ pdR(R/I) for all e,

we must have that ExtiR(R/I [pe], R) = 0 for all e and all i > pdR(R/I). Thus, Hi
I(R) = 0 for all

i > pdR(R/I).

We single out one notable case as a corollary.

Corollary 6.14. Let R be a regular local ring of positive characteristic, and I be an ideal of R
such that R/I is Cohen-Macaulay. Then Hi

I(R) = 0 for all i 6= height(I).

Proof. By Auslander-Buchsbaum and the CM assumption, pdR(R/I) = dim(R) − dim(R/I) =
height(I), so local cohomology vanishes beyond this index. Again since R is CM, height(I) =
depthI(R), and local cohomology vanishes below this index.

Example 6.15. Let K be a field of characteristic p > 0. Consider the ideal I = I2(X2×3) ⊆ R =
K[X2×3] of 2× 2 minors of a generic 2× 3 matrix. Since R/I is Cohen-Macaulay, and I has height
2, H3

I(R) = 0.
As a consequence of this vanishing, we see that K[∆1,∆2,∆3] ⊆ R is not a direct summand.

Indeed, H3
(∆)(K[∆1,∆2,∆3]) 6= 0 so it cannot be a direct summand of H3

(∆)(R) = 0.

We contrast this with the situation in characteristic zero (which we discussed earlier), where
H3
I(R) 6= 0 and the subring above is a direct summand.

6.3 Finiteness results

We recall that we have seen a local cohomology module H2
(x,y)(

K[x,y,u,v]
(xu−yv) ) that had m as its only

associated prime, but had an infinite K-dimensional socle. We can think of this local cohomology
module as quantitatively big. We will also see in the homework a local cohomology module that has
infinitely many associated primes. We can think of that local cohomology module as qualitatively
big.

We showed that if m is a maximal ideal, neither of these bignesses can occur: the local coho-
mology modules with support in m are artinian, hence they have only one associated prime, and
the socle is finite dimensional. Both of these facts can be expressed in terms of Bass numbers: to
say there are finitely many associated primes means that µ0

p(H
i
I(R)) 6= 0 for only finitely many p,

and, if Hi
I(R) is m-torsion, to say that it is artinian means that µ0

p(H
i
I(R)) is finite.

We will now work towards a statement that says that if R is a regular ring of positive charac-
teristic, and I is an arbitrary ideal, then Hi

I(R) is qualitatively and quantitatively small.
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Lemma 6.16. Let (R,m, k) be a regular local ring, and M , N be R-modules, with M finitely
generated. Then Fe

(
ExtiR(M,N)

) ∼= ExtiR
(
Fe(M),Fe(N)

)
for all i.

Proof. This is just a disorienting version of flat base change. We have that Fe
(

ExtiR(M,N)
)

=
Rt ⊗Rs ExtiRs

(M,N) via its Rt-structure. By flat base change, this is the same as ExtiRt
(Rt ⊗Rs

M,Rt ⊗Rs N) ∼= ExtiR
(
Fe(M),Fe(N)

)
.

We also need a statement that shows that certain modules are fixed by Fe.

Lemma 6.17. Let (R,m, k) be a regular local ring.

1. For any multiplicative system, Fe(W−1R) ∼= W−1R.

2. For any ideal I, Fe(Hi
I(R)) ∼= Hi

I(R).

3. For any injective module, Fe(E) ∼= E.

Proof. 1. It is equivalent to show that R1/pe ⊗R W−1R ∼= (W−1R)1/pe . To that end, note that
R1/pe ⊗R W−1R ∼= W−1R1/pe . If w ∈ W , then 1/w1/pe = w(pe−1)/pe/w ∈ W−1R1/pe , so
(W−1R)1/pe ⊆W−1R1/pe . The other containment is clear.

2. We can compute Hi
I(R) from a Čech complex. The terms in this complex are all sums of

localizations of R. The isomorphisms in part 1 commute with the localization maps (check if
this isn’t clear to you!) and the statement follows.

3. The Peskine-Szpiro functors commute with direct sums (like all base change functors do), so
this reduces to checking for an indecomposable injective ER(R/p). We know that ER(R/p) ∼=
ERp(Rp/pRp), and that Rp is Gorenstein, so ERp(Rp/pRp) ∼= H

height(p)
pRp

(Rp). Thus, we have

ER(R/p) ∼= Ȟh(f1, . . . , fh;Rp) for some elements of R whose images form a regular SOP for
Rp. In particular, ER(R/p) is resolved by localizations of R, so the statement again follows
from part 1.

Now we state and prove the finiteness theorem.

Theorem 6.18 (Huneke-Sharp). Let (R,m, k) be a regular local ring of positive characteristic, and
I an ideal. Then

µj(p,Hi
I(R)) ≤ µj(p,ExtiR(R/I,R)) <∞

for all p ∈ Spec(R), and all i, j.

Proof. The last inequality follows from the fact that ExtiR(R/I,R) is a finitely generated R-module,
so we turn to the first inequality. By localization, we can assume that p = m.

Let
0 (→ ExtiR(R/I,R) )→ E0 → · · · → En → 0

be the minimal injective resolution. Applying Fe, we find that

0 (→ Fe(ExtiR(R/I,R)) )→ Fe(E0)→ · · · → Fe(En)→ 0

is exact, and applying the lemmas above, we get injective resolutions

0 (→ ExtiR(R/I [pe], R) )→ E0 → · · · → En → 0.

Since maps on modules induce maps on injective resolutions, we get a commutative diagram
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0 // ExtiR(R/I,R) //

��

E0 //

��

· · · // En //

��

0

0 // ExtiR(R/I [p], R) //

��

E0 //

��

· · · // En //

��

0

0 // ExtiR(R/I [p2], R) //

��

E0 //

��

· · · // En //

��

0

...
...

...

Note that the vertical maps are not necessarily isomorphisms and that the horizontal maps may
be different on each row. Passing to direct limits, we obtain

0 (→ Hi
I(R) )→ lim−→E0 → · · · → lim−→En → 0.

A direct limit of injective modules is injective, so this is an injective resolution. Now we compute
the Bass numbers with respect to m:

µj(m,Hi
I(R)) = dimk ExtiR(k,Hi

I(R)) = dimk H
i(HomR(k, lim−→E•)) = dimk H

i(lim−→HomR(k,E•))

= dimk lim−→H i(HomR(k,E•))) = dimk lim−→ kµ,

where µ = µj(m,ExtiR(R/I,R)). To compute the direct limit of vector spaces of dimension at most
µ, we can quotient out each space by the set of elements that map to zero in the direct limit, to
obtain an directed system with the same limit in which all maps are injective. Since the dimensions
are bounded, the maps must all be isomorphisms past some point, hence isomorphic to the limit.
We conclude that

µj(m,Hi
I(R)) = dimk lim−→ kµ ≤ µ,

as required.

Corollary 6.19. Let (R,m, k) be a regular local ring of positive characteristic, and I an ideal.
Then Ass(Hi

I(R)) is finite for all i.

Proof. We know that for any module M , Ass(M) = Ass(ER(M)) = {p ∈ Spec(R) | µ0(p,M) 6= 0}.
Since ExtiR(R/I,R) is finitely generated, it has finitely many associated primes, hence finitely many
p for which µ0(p,ExtiR(R/I,R)) 6= 0. The same then holds for Hi

I(R) by the previous theorem.

Remark 6.20. A module that satisfies the crucial property F(M) ∼= M used above is called an
F -module; rather, the data of a pair (M, θ) of a module and an isomorphism θ : M → F(M) is
an F -module. These were introduced by Lyubeznik. The study of this structure is very fruitful in
applications to local cohomology. Those who liked the previous theorem are encouraged to read
Lyubenznik’s original paper on F -modules.

6.4 Strong F -regularity

We will discuss some properties qualifying singularities in positive characteristic, and relate them
to other interesting meaningful properties that we have encountered. While most of the notions we
encounter are closely related to the tight closure theory of Hochster and Huneke, to various extents
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they go back in spirit to the work of Hochster and Roberts. First, we state a technical hypothesis
that will simplify things.

Definition 6.21. A ring of positive characteristic p is F -finite if F is module-finite; equivalently,
F e is module-finite for all e.

Remark 6.22. If R is a polynomial ring or power series ring over a perfect field, then R is F -
finite, by Example ??. If S � R is a surjection, then there is a surjection S1/pe ⊗S R� R1/pe , so
quotients of F -finite rings are F -finite. Additionally, a generating set for R1/pe over R localizes to

a generating set for R
1/pe

p over Rp, so localizations of F -finite rings are F -finite.

In short, rings essentially of finite type over perfect fields, and complete local rings with perfect
residue fields are F -finite.

Definition 6.23.

• Let (R,m, k) be a local F -finite ring of positive characteristic p. We say that R is strongly
F -regular if, for any c ∈ R \ ∪Min(R), there is some e such that the map cF e : R→ R splits
(as a map of modules over the source); i.e., c1/peR ⊆ R1/pe is a free R-module summand.

• Let (R,m,K) be a graded F -finite ring of positive characteristic p. We say that R is strongly
F -regular if, for any homogeneous c ∈ R \ ∪Min(R), there is some e such that the map
cF e : R → R splits (as a map of graded modules over the source); i.e., c1/peR ⊆ R1/pe is a
graded free R-module summand. We realize cF e as a graded homomorphism by rescaling the
grading of the target copy of R by dividing degrees by pe (i.e., considering the grading as in
R1/pe).

Proposition 6.24.

• Let (R,m, k) be an F -finite regular local ring. Then R is strongly F -regular.

• Let (R,m,K) be a graded polynomial ring, with K perfect. Then R is strongly F -regular.

Proof. Recall that R is a domain here, so ∪Min(R) = 0. In this case, R1/pe is a free R-module.
Given c ∈ R, pick e such that r /∈ m[pe]; we can do this by Krull intersection. Note that R1/pe ⊗R
R/m ∼= (R/m[pe])1/pe . Since c1/pe is nonzero in this module, it is part of a free basis for R1/pe .

The proof in the polynomial ring case is similar (but simpler!).

Exercise 6.25. If R is a strongly F -regular local or graded ring, then R is normal. In particular,
R is a domain.

A hint: show that if φ : R1/pe → R is R-linear, and c is in the conductor of R, then φ(c1/pe) is
also in the conductor.

Proposition 6.26. Let R be a direct summand of a strongly F -regular local or graded ring S; in
the graded case, we assume the splitting is given by a degree-preserving map. Then R is strongly
F -regular as well.

Proof. Fix c ∈ Rr 0. Then, viewing c as an element of S, there is some e and some φ : S1/pe → S
such that φ(c1/pe) = 1, since S is strongly F -regular. Let β : S → R be an R-linear splitting of the
inclusion. Then, the map β ◦ φ|R1/pe : R1/pe → R is R-linear, and sends c1/pe to 1.

The property of strong F -regularity is preserved under localization.
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Lemma 6.27. 1. Let (R,m,K) be a strongly F -regular graded ring. Then (Rm,m,K) is a
strongly F -regular local ring.

2. Let (R,m, k) be a strongly F -regular local ring. Then for any p ∈ Spec(R), Rp is strongly
F -regular as well.

Proof. 1. Take c ∈ Rmr 0. We can write c = cn+···+cm
d with ci homogeneous, m > 0, and d /∈ m.

There is, for some e, a homogeneous R-linear map φ : R1/pe → R such that φ((cm)1/pe) = 1.
Since φ is homogeneous, φ((cn+ · · ·+cm+1)1/pe) ∈ m; in particular, φ((cn+ · · ·+cm)1/pe) /∈ m.

We can extend φ to a map φ̃ : R
1/pe

m = R
1/pe

m → Rm. Then, the map β = φ̃ ◦ ·d1/pe satisfies

β(c1/pe) = φ̃(c1/ped1/pe) = φ̃((cn + · · ·+ cm)1/pe) = φ((cn + · · ·+ cm)1/pe) /∈ m,

so c1/pe generates a free summand.

2. Given r
s ∈ Rp, there is an e and an R-linear map φ : R1/pe → R such that φ(r1/pe) = 1. We

can extend φ to an Rp-linear map from R
1/pe

p → Rp that sends r1/pe

1 to 1. As above, we can

premultiply by s1/pe to get the desired map.

Lemma 6.28. Let R be a strongly F -regular local or graded ring. Then,

1. for all e and all i, the map F e : Hi
m(R)→ Hi

m(R) is injective, and

2. for all c ∈ R r 0 (homogeneous, in the graded case) and all i, there is some e such that
cF e : Hi

m(R)→ Hi
m(R) is injective.

Proof. By definition, there is some f such that F f splits: i.e., there is an R-linear map β : R1/pf →
R such that the composition R ⊆ R1/pf β−→ R is the identity map. We can factor the first inclusion

to get R ⊆ R1/p ⊆ R1/pf β−→ R is the identity, so R is a direct summand of R1/p. Now, R1/pe is an
R1/pe-linear direct summand of R1/pe+1

for each e, hence an R-linear summand. Composing, we
obtain that R is an R-linear summand of each R1/pe .

Then, since the identity factors through F e for all e, by functoriality, the identity on Hi
m(R)

factors through F e : Hi
m(R)→ Hi

m(R) for all e, so this map is injective. Similarly, for each c ∈ Rr0,
there is an e such that the identity on R factors through cF e, so the identity on Hi

m(R) factors
through cF e : Hi

m(R)→ Hi
m(R), which then must be injective.

Proposition 6.29. Let R be a strongly F -regular graded or local ring. Then R is Cohen-Macaulay.

Proof. If we have a graded counterexample, then the localization at the homogeneous maximal
ideal is also a counterexample, so we can assume that R is local.

If we have a local ring R that is a counterexample, choose a prime p ∈ Spec(R) such that Rq

is Cohen-Macaulay for all q ( p. We then obtain a local counterexample (R,m, k) where R is
Cohen-Macaulay on the punctured spectrum.

From a problem on the homework1, we know that Hi
m(R) has finite length for all i < dim(R).

Pick c ∈ m r 0, and e such that F e and cF e : Hi
m(R) → Hi

m(R) are injective. Since Hi
m(R) has

finite length, both maps are isomorphisms. If Hi
m(R) 6= 0, it has a nonzero socle; let η be a socle

element. Then there is an element ξ ∈ Hi
m(R) such that F e(ξ) = η, so cF e(ξ) = cη = 0, which is a

contradiction.
1We proved this in the case that R is a quotient of a regular ring, but it holds for all F -finite rings. A nontrivial

way to see this is as follows: F -finite rings have dualizing complexes (Gabber) and rings with dualizing complexes are
quotients of Gorenstein rings (Kawasaki). The proof in the HW works for quotients of Gorenstein rings in exactly
the same way.
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We encapsulate the last two properties with a definition.

Definition 6.30.

• Let (R,m, k) be a local F -finite ring. We say that R is F -rational if R is Cohen-Macaulay
and for each c ∈ R \ ∪Min(R), there is an e such that cF e : Hd

m(R)→ Hd
m(R) is injective.

• Let (R,m,K) be a graded F -finite ring. We say that R is F -rational if R is Cohen-Macaulay
and for each homogeneous c ∈ R \ ∪Min(R), there is an e such that cF e : Hd

m(R) → Hd
m(R)

is injective.

It is evident from the preceding results that strongly F -regular rings are F -rational.

Proposition 6.31. Let R be F -rational and graded. Then a(R) < 0.

Proof. Let d = dim(R). If a(R) = a > 0, a nonzero element of [Hd
m(R)]a maps to a nonzero element

of [Hd
m(R)]pa under F , which contradicts the definition of a(R).

If a(R) = 0, then any element of [Hd
m(R)]0 is in the socle of Hd

m(R). Let c have positive degree,
and pick e such that cF e : Hd

m(R)→ Hd
m(R) is injective. Then, the image of cF e contains nonzero

elements of degree equal to that of c, which contradicts that the a-invariant is zero.

Theorem 6.32. Let S be a regular F -finite local or graded ring of positive characteristic. Let R
be a direct summand of S. Then R is Cohen-Macaulay. If R is graded, then a(R) < 0.

Although we won’t use them in this class, it is worth defining two more other famous classes of
F -singularities.

Definition 6.33. Let (R,m, k) be an F -finite local ring.

• R is F -pure if F : R→ R splits.

• R is F -injective if F : Hi
m(R)→ Hi

m(R) is injective for all i.

The connection between these notions is given by the diagram below. We leave it as an (easy)
exercise to verify the implication not stated above.

regular +3 strongly F -regular +3

��

F -rational +3

��

Cohen-Macaulay

F -pure +3 F -injective

These properties are somewhat independent of the properties we encountered in the section on
local duality.

Example 6.34. If K is a field of positive characteristic, R = KJx, y, zK/(x4 +y4 +z4) is a complete
intersection, but is not F -injective. To see this, we note that the local cohomology of R with support
in m agrees with that of its uncompleted graded counterpart, and Frobenius does not act injectively
on the local cohomology there, since the a-invariant is positive.

Example 6.35. If K is a field of positive characteristic, S = KJx3, x2y, xy2, y3K is strongly F -
regular, but not Gorenstein. We have seen already that it is not Gorenstein, and we note that it is
a direct summand of KJx, yK so see that it is strongly F -regular.

We end our discussion of strong F -regularity with an application to local cohomology.
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Proposition 6.36. Let R be a strongly F -regular local domain, and I ⊆ R. Then, the local
cohomology modules Hi

I(R) are faithful, i.e., are not annihilated by any nonzero element.

Proof. Let c ∈ R r 0. Pick an e such that cF e splits. By the argument above, we have that
cF e : Hi

I(R) → Hi
I(R) is injective. This factors through ·c : Hi

I(R) → Hi
I(R), which must not be

the zero map, so c does not annihilate Hi
I(R).

6.5 Magic squares

Definition 6.37. A magic square of size t and sum n is a t× t array of nonnegative integers such
that each row sums to n and each column sums to n.

For example,

4 9 2

3 5 7

8 1 6

1 14 14 4

11 7 6 9

8 10 10 5

13 2 3 15

are magic squares of size 3 and sum 15, and of size 4 and sum 33, respectively2. These have
appeared in China, India, Persia, Arabia, etc. independently millenia ago. According to Narayana,
a 14th century Indian mathematician, the purpose of studying magic squares is to destroy the ego
of bad mathematicians, and for the pleasure of good mathematicians.

Given a fixed size, how does the number of magic squares of row sum n vary as a function of n?
When the size r = 1, this is just the constant function 1. When r = 2, everything is determined
by the first row, so there are n+ 1. We will show that for each r, the number of magic squares of
size n is a polynomial in n.

Fix r, and let S = K[Xr×r] be a polynomial ring over a field K. Give S a grading with values
in

Z2r = Z〈e1, . . . , er, e
′
1, . . . , e

′
r〉

by deg(xi,j) = ei + e′j . Given a monomial M =
∏
i,j x

ai,j
i,j , the array A = [ai,j ] has i-th row sum

given by the ei component of deg(M), and j-th column sum given by the e′j component of deg(M).

Map Z2r → Z2r−1 = Z〈f1, . . . , fr−1, f
′
1, . . . , f

′
r−1, f

′′〉 by the rules

e1 7→ −f1 − f ′′, ei 7→ −fi + fi−1 for 1 < i < r, er 7→ fr−1,

e′1 7→ −f ′1 + f ′′, e′j 7→ −f ′j + f ′j−1 for 1 < j < r, e′r 7→ f ′r−1.

The point of this mess is that under the f -grading, M =
∏
i,j x

ai,j
i,j has degree 0 if and only if

A = [ai,j ] is a magic square. Indeed, the fi-degree of M is the ei+1-degree minus the ei degree, so
the row sums all agree, the f ′j-degree of M is the e′j+1-degree minus the ej-degree, so the column
sums all agree, and the f ′′-degree of M is the e′1-degree minus the e1-degree, so the row sum agrees
with the column degree.

Let R be the degree zero piece of S in the f -grading. Evidently, as a K-vector space,

R =
⊕

K ·
∏
i,j

x
ai,j
i,j

∣∣ A = [ai,j ] is a magic square.

Since S can be written as a direct sum of its graded pieces in the f -grading, and these are preserved
by multiplication by elements of R, this realizes R as an R-linear direct summand of S.

We need to collect one more fact about R.
2The first is the Lo Shu square from ∼ 600 BCE, and the second is engraved on the Sagrada Famı́lia
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Lemma 6.38. The ring R described above is generated as a K-algebra by {
∏
i xi,σ(i) | σ ∈ Sn}.

Proof. It suffices to show that any monomial in R is a product of monomials in the set specified
above. The exponent matrix of a monomial in the specified set is a permutation matrix. Thus, it
suffices to show that any magic square is a sum of permutation matrices. By induction on the sum,
it suffices to show that for any magic square, one can subtract a permutation matrix and obtain a
smaller magic square. This is clear.

We can now prove the theorem.

Theorem 6.39. For r > 0, the function

mr(n) = # magic squares of size r and sum n

agrees with a polynomial function for all n ∈ N.

Proof. The ring R is a direct summand of the polynomial ring S. This inclusion preserves degrees
if we give each xi,j degree one, and the splitting constructed above which sends∑

A∈Nr×r

fA
∏
i,j

x
ai,j
i,j 7→

∑
A a magic square

fA
∏
i,j

x
ai,j
i,j

is a graded splitting. We call this grading the basic N-grading on R. Assume now that K is a
perfect field of positive characteristic. We have that R is F -rational, hence it is Cohen-Macaulay
with negative a-invariant in the basic grading.

Now, R is generated by elements of degree r in the basic grading. In particular, every element
of R lives in degrees a multiple of r. We can therefore rescale all of the degrees in R by dividing
every degree by r, and call this the rescaled grading.

In the rescaled grading, R is standard graded, CM with negative a-invariant, so its Hilbert
function is a polynomial. But, the space of elements of degree n in the rescaled grading has a
K-basis in bijection with the magic squares with sum n.



Chapter 7

Local cohomology and differential
operators

7.1 Differential operators

While we will mostly focus on the case of a polynomial or power series ring over a field of charac-
teristic zero, we will begin with a general definition.

Definition 7.1. Let A ⊆ R be an inclusion of rings. The A-linear differential operators on R of
order at most n are defined inductively as follows:

• D0
R|A := HomR(R,R) = {f̄ | f ∈ R}, where f̄ is the map “multiplication by f”

• Dn
R|A := {δ ∈ HomA(R,R) | δ ◦ f̄ − f̄ ◦ δ ∈ Dn−1

R|A }.

With no superscript, the A-linear differential operators on R are DR|A =
⋃
n∈ND

n
R|A.

Typically, one identifies f̄ with f , and D0
R|A with R. This has the advantage of being less

clunky, but has the disadvantage of introducing some ambiguity as to whether an element f ∈ R is
to be considered as an operator from R to R, or as an element of R to be acted upon by operators.

In our main case of present interest, we can give an explicit description.

Example 7.2. Let K be a field of characteristic zero. Let R = K[x1, . . . , xd] or R = KJx1, . . . , xdK.
Then

Dn
R|K =

{∑
f̄α

∂α1

∂xα1
1

· · · ∂
αd

∂xαd
d

∣∣∣ ∑αi ≤ n
}
⊆ HomK(R,R).

That is, the differential operators of order at most n are the R-linear combinations of compositions
of at most n partial derivatives; here we interpret the R elements as “multiplications by.”

To be concrete, x1x3
2
∂2

∂x2
1

is a differential operator of order 2 that sends x1 to zero, and x2
1 to

2x1x
3
2.

Note that ∂
∂x1

x̄1 is an element of DR|K , despite it not fitting the description above. Indeed, if

we expand any element in R in terms of powers of x1 as f =
∑
fix

i
1, where each fi only depends

on the other variables, we have(
∂

∂x1
x̄1

)
(f) =

∂

∂x1

∑
fix

i+1
1 =

∑
fi(i+ 1)xi = f + x1

∑
ifix

i−1 =

(
1̄ + x̄1

∂

∂x1

)
(f).

97



98 CHAPTER 7. LOCAL COHOMOLOGY AND DIFFERENTIAL OPERATORS

Similarly, for each i, we have relations ∂
∂xi
x̄i = 1̄+ x̄i

∂
∂xi

. Furthermore, as we used implicitly above,

any partial commutes with any x̄i with a different index. Using these rules, any combination of f̄ ’s
and partials can be rearranged as a sum such that in each term, all of the partials occur first (on
the right); that is, any such combination is of the form above.

We can thus rewrite our description as follows:

DR|K = R

〈
∂

∂x1
, . . . ,

∂

∂xd

〉
⊆ HomK(R,R),

where the brackets denote generation as a noncommutative ring, where the operation is composition,
and the copy of R is the “multiplications by.” To see that this description agrees with the prescribed
definition requires a proof. It is easy to see that we have a containment between the description
here are the definition; we leave as an exercise the other containment. Alternatively, one can use
the descriptions here as a working definition and give alternative proofs of the next few lemmas.

Lemma 7.3. Let A ⊆ R be an inclusion of rings. Let α ∈ Dm
R|A and β ∈ Dn

R|A. Then, α◦β ∈ Dm+n
R|A

and [α, β] := α ◦ β − β ◦ α ∈ Dm+n−1
R|A .

Proof. We proceed by induction on m+n. If m+n = 0, the first assertion is clear, and the second
is clear if m+ n = 1. Now,

[α ◦ β, f̄ ] = α ◦ β ◦ f̄ − f̄ ◦α ◦ β = α ◦ β ◦ f̄ −α ◦ f̄ ◦ β +α ◦ f̄ ◦ β − f̄ ◦α ◦ β = α ◦ [β, f̄ ] + [α, f̄ ] ◦ β.

Since the order of [β, f̄ ] is less than n, and the order of [α, f̄ ] is less than m, the induction hypothesis
applies to each term, so each is in Dm+n−1

R|A . Then, by definition, α ◦ β ∈ Dm+n−1
R|A .

For the second claim, we note that

[[α, β], f̄ ] = [α, [β, f̄ ]]− [[α, f̄ ], β],

(check it!) which lies in Dm+n−2
R|A by the induction hypothesis, so [α, β] ∈ Dm+n−1

R|A by definition.

Remark 7.4. From the first statement above, it follows that DR|A is a not-necessarily-commutative
ring under composition. We will henceforth omit the composition circles.

Definition 7.5. A D-module on a ring R is a left DR|A-module. When we assert that an R-module
M is a D-module, this means that the action of f on M as an R-module agrees with the action of
f̄ on M as a DR|K-module.

We caution that the dependence on A is suppressed in the notation.

Example 7.6. The free cyclic module R is tautologically a D-module.

A number of other interesting R-modules are also D-modules for any R and subring A.

Proposition 7.7. Let R be a noetherian ring, and A a subring. Let M be a D-module.

1. For any multiplicative set W , W−1M is a D-module.

2. For any ideal I, ΓI(M) is a D-module.

3. If R is Gorenstein, any injective R-module is a D-module.

4. For any ideal I, Hi
I(R) is a D-module.
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Proof. 1. We define the action of D on W−1M by induction on the order. For operators of order
0, this is just localization as an R-module. Given m/w ∈W−1M , we set

δ
(m
w

)
=
δ ·m− [δ, w̄](mw )

w
.

Since m ∈ M and [δ, w] has lower order than δ, the right-hand side makes sense inductively.
We leave the verification to you that this is a D-module action.

2. If I = (f1, . . . , ft), then ΓI(M) = ker(M → ⊕iMf ) is the kernel of a map of D-modules,
hence is a D-module.

3. It suffices to check for indecomposable injectives. As in the proof that injectives over regular
local rings are F -modules, we can write an indecomposable injective as the cohomology of a
complex whose terms are localizations of R. We can realize this as a complex of D-modules,
so such an injective is a D-module.

4. The Čech complex on a generating set for I is a complex of D-modules, hence the cohomology
is a D-module.

We note that it is not a priori clear, on its own, that a differential operator gives a map on local
cohomology, since such a map is not R-linear.

7.2 Filtrations and Bernstein’s inequality

Although the ring of differential operators is noncommutative in general, it is close to being commu-
tative in the sense that it has a filtration for which the associated graded is commutative. Pushing
this philosophy gives us surprisingly great leverage over D-modules in the case of polynomial rings
in characteristic zero (and power series rings too). To put this to use, we will discuss filtrations in
some generality.

All modules are left modules.

Definition 7.8. • A filtration on a not-necessarily-commutative ring R is an ascending chain
of additive subgroups of R

F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ R

such that Fi · Fj ⊆ Fi+j and
⋃
i∈N Fi = R. If R is a K-algebra, we assume in addition that

each Fi is a K-vector space. We call R endowed with this structure a filtered ring.

• If R is a filtered ring, and M an R-module, a filtration on M is an ascending chain of additive
subgroups of M

G0 ⊆ G1 ⊆ G2 ⊆ · · · ⊆M

such that Fi ·Gj ⊆ Gi+j and
⋃
i∈NGi = M . If R is a K-algebra, we assume in addition that

each Gi is a K-vector space. We call M endowed with this structure a filtered module. Note
that this notion depends on a fixed filtration on R; if we wish to emphasize the filtration on
R, we may say that G• is compatible with the filtration F• on R.

Example 7.9. Let A ⊆ R. The ring of differential operators DR|A admits a filtration given by
Fi = Di

R|A; we proved the key filtration property as a lemma above.
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Definition 7.10. If R is a filtered ring, the associated graded ring is

grF•(R) :=
⊕
n∈N

Fi/Fi−1.

The filtration property endows this with a well-defined multiplication, and the resulting ring is
graded by N.

Definition 7.11. If R is a filtered ring, and M a filtered module, the associated graded module is
the grF•(R)-module

grG•(M) :=
⊕
n∈N

Gi/Gi−1.

Again, there is an elementary verification being brushed under the rug.

Proposition 7.12. Let A ⊆ R be an inclusion of rings. The associated graded ring of DR|A with
respect to the order filtration, which we denote grord(DR|A), is commutative.

Proof. Let x ∈ grord(DR|A)m and y ∈ grord(DR|A)n. Then x = x′ + Dm−1
R|A and y = y′ + Dn−1

R|A for

some x′, y′ ∈ Dm
R|A, D

n
R|A, respectively. By a lemma above, x′y′ − y′x′ ∈ Dm+n−1

R|A , so xy − yx =

x′y′ − y′x′ + Dm+n−1
R|A = 0 + Dm+n−1

R|A = 0 in grord(DR|A). Since homogeneous elements span the
ring as an additive group, we must have that all elements commute.

Example 7.13. Let K be a field of characteristic zero, and R a polynomial ring or power series
ring in d variables over K. Note that

grord(DR|K)0 = D0
R|K
∼= R, and grord(DR|K)1 =

D1
R|K

D0
R|K

∼=
R⊕

⊕
iR

∂
∂xi

R
∼=
⊕
i

Rξi,

where ξi is the class of ∂
∂xi

modulo D0
R|K , and the copy of R is {r̄ | r ∈ R}. Since every element of

Di
R|K can be written as a combination of products of elements in D1

R|K , it follows that grord(DR|K)

is generated over R in degree one. Thus, there is a graded surjection R[y1, . . . , yd]→ grord(DR|K),
where R lives in degree zero, and the yi’s are (commutative) variables.

To see that this is an isomorphism, we note that the inclusions Di−1
R|K ⊂ D

i
R|K are split inclusions

of free modules, so each graded component grord(DR|K)i is R-free and its rank is easily calculated

as
(
d+i−1
d−1

)
, which agrees with the R-rank of R[y1, . . . , yd]i; it follows that the kernel is zero.

Lemma 7.14. Let R be a filtered ring and M ′ ⊆M be R-modules. Let M be filtered. Then G•∩M ′
is a filtration on M ′, and if grG•∩M ′(M

′) ⊆ grG•(M) is an equality, then M ′ = M .

Proof. It is clear that G• ∩M ′ is a filtration on M ′. There are inclusions M ′∩Gi
M ′∩Gi−1

⊆ M∩Gi
M∩Gi−1

, and
hence an inclusion of the associated graded modules.

Now, if the associated gradeds are equal, then M ′∩Gi
M ′∩Gi−1

= M∩Gi
M∩Gi−1

for all i, and in particular,

M ′ ∩ G0 = M ∩ G0. It follows by induction on i that M ′ ∩ Gi = M ∩ Gi for all i, and since⋃
i∈NGi = M , we must have that M ′ = M .

Proposition 7.15. Let R be a filtered ring and M an R-module. If M has a filtration such
that grG•(M) is a noetherian grF•(R)-module, then M is noetherian. In particular, if grF•(R) is
noetherian, then R is noetherian.
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Proof. Given a chain of submodules

M1 ⊆M2 ⊆M3 ⊆ · · · ⊆M,

there are induced filtrations on each Mi given by intersecting the filtration G•. This induces a
chain

grG•∩M1
(M1) ⊆ grG•∩M2

(M2) ⊆ · · · ⊆ grG•(M),

of grF•(R)-submodules of the noetherian module grG•(M), which must stabilize. By the previous
lemma, this implies that the original chain stabilizes.

The previous proposition motivates the following definition.

Definition 7.16. Let R be a filtered ring, and M an R-module. A good filtration on M is a
filtration on M such that grG•(M) is a finitely generated module over grF•(R).

Proposition 7.17. Let R be a filtered ring such that grF•(R) is noetherian. Let M be an R-module.
Then, M is finitely generated if and only if M admits a good filtration.

Proof. The “if” is a consequence of the previous proposition. For the other implication, we construct
a good filtration on M from a generating set m1, . . . ,mt by setting Gi = Fi ·m1 + · · ·+ Fi ·mt ⊆
M .

Proposition 7.18. Let R be a filtered ring such that grF•(R) is noetherian. Let M be an R-module.
Let G• and G′• be filtrations for M . Suppose that G• is a good filtration. Then there is an integer
a such that Gi ⊆ G′i+a for all i.

In particular, any two good filtrations are comparable by a finite shift in either direction.

Proof. Let m′1, . . . ,m
′
s ∈M be elements such that their images m1, . . . ,ms generate grG•(M) as a

grF•(R)-module, and m′i ∈ Gai rGai−1 ∩G′bi rG′bi−1. By the generation assumption, one has an
equality Gt =

∑
Ft−aimi for all t, where F<0 = 0 (check it!).

Thus, for t > maxi{ai},

Gt =
∑

Ft−aimi ⊆
∑

Ft−aiG
′
bi
⊆
∑

G′t+bi−ai ⊆
∑

G′t+a

where a = maxi{bi − ai}.

Proposition 7.19. Let R be a filtered K-algebra with grF•(R) commutative and finitely generated
over F0 = K. Let M be a finitely generated R-module. Then, there are integers d(M) ≥ 0,

e(M) > 0 (if M 6= 0) such that for any good filtration G• of M , dimK(Gt) ∼ e(M)
d(M)! t

d(M) as a
function of t.

Proof. For a fixed good filtration, dimK(Gt) as a function of t is a (cumulative) Hilbert function
H(t) = dimK([grG•(M)]≤t) of a finitely generated graded module over a finitely generated graded
K-algebra. Thus, H(t) agrees with an integer-valued polynomial for sufficiently large t.

To see that this is independent of the choice of a good filtration, letG′• be another good filtration,
and H ′(t) the corresponding Hilbert function. Let H(t) ∼ e

d! t
d. By the previous proposition, there

is some a such that Gt−a ⊆ G′t ⊆ Gt+a for all sufficiently large t. Then,

e

d!
= lim

t→∞

dimK(Gt−a)

td
≤ dimK(G′t)

td
≤ dimK(Gt+a)

td
=

e

d!
,

where the equalities holds since dimK(Gt+a/Gt) grows at the rate of td−1 for fixed t. Thus,
dimK(G′t) ∼ e

d! t
d as well.
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Definition 7.20. In the situation above, the integers d(M) and e(M) are called the dimension
and multiplicity of M , respectively. We note that these notions a priori depend on the choice of a
filtration on R (but not on M).

Lemma 7.21. Let R be a filtered K-algebra with grF•(R) commutative and finitely generated over
F0 = K. Let 0 → A → B → C → 0 be a short exact sequence of finitely generated R-modules.
Then d(B) = max{d(A), d(C)}. If all three of the dimensions are equal, then e(B) = e(A) + e(C).

Proof. Given a good filtration on B we can restrict to A to obtain a good filtration, and the
surjection to C induces a good filtration. Then, the Hilbert functions of the associated gradeds are
additive on the short exact sequence, so the statements follow from the analogous statements from
the usual Hilbert function situation.

We want to apply these facts to the ring of differential operators over a polynomial ring. We
already have a filtration, the order filtration, for any ring of differential operators. However, this
fails the condition F0 = K in the propositions above. We can salvage the order filtration for the
purposes above, but we will pursue a somewhat easier approach, using a different filtration.

Definition 7.22. Let K be a field of characteristic zero, and R a polynomial ring in d variables
over K. The Bernstein filtration on DR|K is given by

Fi =
⊕

|α|+|β|≤i

K · x̄α∂β, where α, β ∈ Nd, x̄α = x̄1
α1 · · · x̄dαd , and ∂β =

∂β1

∂xβ1
1

· · · ∂
βd

∂xβdd
.

From the construction, this is obviously an increasing union of K-vector spaces. Using the
relations ∂

∂xi
x̄i = x̄i

∂
∂xi

+ 1̄, we see that any differential operator lies in some Fi; here it matters
that we are dealing with a polynomial ring instead of a power series ring. Using the same relations,
we can see that FiFj ⊆ Fi+j : when we “straighten out” differential operators into the desired form,
we pick up terms that are lower in the filtration.

Proposition 7.23. Let K be a field of characteristic zero, and R a polynomial ring in d vari-
ables over K. The associated graded ring of DR|K with respect to the Bernstein filtration, denoted

grBer(DR|K), is a standard graded polynomial ring generated by the images of the x̄i’s and ∂
∂xi

’s.

Proof. From the definition of the Bernstein filtration, it is evident that elements of Fi can be
expressed as linear combinations of products of elements in F1, and hence that the associated
graded is generated in degree 1. To see that the associated graded is commutative, we then just
need to see that for each i, the classes of x̄i and ∂

∂xi
commute. But

(x̄i + F0)

(
∂

∂xi
+ F0

)
−
(
∂

∂xi
+ F0

)
(x̄i + F0) = x̄i

∂

∂xi
− ∂

∂xi
x̄i + F1 = −1̄ + F1 = 0.

Thus, the associated graded is a quotient of a polynomial ring in 2d variables. Now, the K-vector
space dimension of Fi agrees with the (cumulative) Hilbert function of a polynomial ring in 2d
variables evaluated at i, so the graded ring must be the trivial quotient (the polynomial ring
itself).

The following amazing fact is the reward for working with the Bernstein filtration. It is the key
to the power of D-modules on polynomial rings and smooth varieties.

Theorem 7.24 (Bernstein’s inequality). Let K be a field of characteristic zero, and R a polynomial
ring in d variables over K. For any nonzero finitely generated D-module, d ≤ d(M) ≤ 2d.
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Proof. The second inequality is clear. Take a good filtration G• for M (with respect to the Bernstein
filtration).

We claim that the map Ft → HomK(Gt, G2t) given by the left action is injective. To see this,
we induce on t. For t = 0, F0 consists of zero units, which act injectively. Let δ ∈ Ft. There is
an i for which [δ, x̄i] or [δ, ∂

∂xi
] is a nonzero element of Ft−1 (check it!). In the first case, by the

IH, (δx̄i − x̄iδ)(Gt−1) 6= 0. Since x̄tGt−1 ⊆ Gt, δ(Gt) = 0 would give a contradiction. The same
reasoning applies in the second case.

Consequently, dimK(Ft) ≤ dimK HomK(Gt, G2t) = (dimK(Gt))(dimK(G2t)). Since one has
dimK(Ft) ∼ 1

(2d)! t
2d, the statement follows.

Remark 7.25. A consequence of this argument is that any finitely generated D-module is faithful.

Definition 7.26. Let K be a field of characteristic zero and R be a polynomial ring in d variables
over K. A D-module M is holonomic if it is finitely generated and d(M) = d or M = 0 (with
respect to the Bernstein filtration).

Example 7.27. R is a holonomic D-module. To see this, we note that R is generated by 1 as a
D-module, and that every partial annihilates 1, so we can write R = D/D(∂). Then, it is easy
to see that grBer(R) endows R with its usual standard grading. Note that an easy consequence of
Bernstein’s inequality is that for no proper ideal I of R is R/I a D-module.

Remark 7.28. Let K be a field of characteristic zero and R = K[x1, . . . , xd]. If one works with the
order filtration, the graded pieces of grord(DR|K) are generally not finite dimensional vector spaces,
so one cannot define degree and multiplicity by using the Hilbert function directly. However, one
could define the dimension of a D-module M as the dimension as a grord(DR|K)-module of grG•(M),
where G• is a good filtration on M with respect to the order filtration. It turns this returns the
same value as d(M) with respect to the Bernstein filtration. In particular, the crucial Bernstein
inequality holds if we work with the order filtration.

In the case of a power series ring R = KJx1, . . . , xdK over a field K of characteristic zero, the
Bernstein inequality holds for the order filtration as well. One can find this in Björk’s book; see
Mel’s primer on Gennady’s theorems from his Winter 2011 class. The associated graded grord(DR|K)
has a distinguished maximal ideal mgrord(DR|K)0 + grord(DR|K)+, and one obtains a theory of
multiplicities for holonomic modules as well.

Remark 7.29. The assumption that R be a polynomial or power series ring, or some similar
smoothness/regularity hypothesis is also crucial for a number of reasons. First, there is no Bernstein
filtration for most rings; the ring of differential operators is not generated over R by derivations for
many rings—conjecturally, it only happens for regular rings in characteristic zero. Second, there
are many C-algebras R for which DR|C and grord(DR|C) are not noetherian. Third, Bernstein’s
inequality (in the order filtration) can fail even for finitely generated C-algebras.

7.3 Holonomicity and Lyubeznik’s finiteness theorem

We can apply the theory of D-modules to prove an analogue of the positive characteristic theorem
of Huneke and Sharp from above. The result will follow just from basic properties of holonomic
modules.

Lemma 7.30. Let R be a polynomial ring over a field of characteristic zero. If M is a holonomic
D-module, then any submodule or quotient module of M is holonomic. The homology modules of
any complex of holonomic D-modules is holonomic.
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Proof. This is immediate from the fact DR|K is noetherian, so subs and quotients of f.g. modules
are f.g. and that the dimension of any sub or quotient is no greater than that of the original.

Lemma 7.31. Let R be a polynomial ring over a field of characteristic zero. If M is a holonomic
D-module, then `DR|K (M) ≤ e(M). In particular, it has finite length.

Proof. If M ′ is a proper submodule of M , since d(M ′) = d(M) = d(M/M ′), we have that e(M) =
e(M ′) + e(M/M ′), with e(M/M ′) > 0, so e(M ′) < e(M). Thus any proper chain of submodules
yields a strictly increasing sequence of positive integers bounded by e(M), hence can have at most
e(M) terms.

Lemma 7.32. Let R be a polynomial ring over a field of characteristic zero. Let M be a holonomic
D-module. Then the set of associated primes of M as a D-module is finite.

Proof. We proceed by induction on the length as a D-module, with length zero being trivial. If M
is nonzero, and p is an associated prime, then Γp(M) 6= 0, and if q is another associated prime, then
Γq(M) 6= Γp(M). Thus, unless p is the only associated prime of M , Γp(M) is a proper D-submodule
of M . We obtain a short exact sequence of nonzero holonomic D-modules

0→ Γp(M)→M →M/Γp(M)→ 0.

By the induction hypothesis on length, both Γp(M) and M/Γp(M) have finitely many associated
primes. Since Ass(M) ⊆ Ass(Γp(M)) ∪Ass(M/Γp(M)), the lemma follows.

Lemma 7.33. Let R be a polynomial ring over a field of characteristic zero. Let M be a not-
necessarily-finitely-generated D-module with a filtration G• compatible with the Bernstein filtration
on DR|K . If there exists an integer c such that dimK(Gt) ≤ ctn + O(tn−1), then the D-module M
is finitely generated and holonomic.

Proof. We will show that any chain of finitely generated submodules of M stabilizes; it will follow
from this that M is a noetherian module over a noetherian ring, and hence a finitely generated
module. One we have done this, we know that M is holonomic by the definition of dimension.

Let M ′ be a finitely generated D-submodule of M , and consider a good filtration G′• on M ′

compatible with the Bernstein filtration on DR|K . Since G′• is a good filtration on M ′ and G•∩M ′
is a filtration on M ′, there is an integer a such that G′i ⊆ Gi+a ∩M ′ for each i. It follows that
d(M ′) = d and that e(M ′) ≤ d!c. Thus, any finitely generated submodule of M is holonomic of
multiplicity at most d!c. As in the lemma above, a proper chain of holonomic submodules of M
yields a strictly increasing sequence of positive integers bounded by d!c, hence cannot be infinite.

Proposition 7.34. Let R be a polynomial ring over a field of characteristic zero, and f ∈ R. Then
Rf is a holonomic D-module.

Proof. Set Gt = { gf t | deg(g) ≤ t(1 + deg(f))}. We claim that this is a filtration on Rf compatible
with the Bernstein filtration and that this satisfies the length inequality above.

An interesting consequence of the above proposition is that for any nonzero f , there is an
N such that for all n > N , there is a differential operator δn with δn(1/fn) = 1/fn+1. Indeed,
Rf = D·{1, 1/f, 1/f2, 1/f3, . . . }, since this is a generating set as an R-module, and by holonomicity,
a finite subset of these generators suffices. A refinement of this observation is given by the existence
of the Bernstein-Sato polynomial : for any f ∈ R \ 0, there is some bf (s) ∈ K[s] and some δ(s) ∈
DR|K [s] (i.e., a polynomial combination in s of differential operators) such that δ(t)(f t+1) = bf (t)f t

for all t ∈ Z.
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Theorem 7.35. Let R be a polynomial ring over a field K of characteristic zero. Let I ⊆ R be an
ideal. Then each Hi

I(R) has finitely many associated primes.

Proof. The Čech complex on a generating set for I is a complex of holonomic D-modules. Its
homology modules, the local cohomology modules, are holonomic. Thus they have finitely many
associated primes.
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Č(f1, . . . , ft;M), 44
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