Homework \#4

Please write up and turn in at least four of the following problems at the beginning of class Monday, April 8.
(1) Find primary decompositions and compute the cohomological dimensions of

$$
I=\left(u^{2}-x^{2}, v^{2}-y^{2}, w^{2}-z^{2}\right) \subseteq K[u, v, w, x, y, z]
$$

and

$$
J=\left(u^{2}-x^{2}, u v-x y, u w-x z, v^{2}-y^{2}, v w-y z, w^{2}-z^{2}\right) \subseteq K[u, v, w, x, y, z]
$$

where K is a field of characteristic not equal to two.
(2) Let R be a noetherian ring and I an ideal of R. Let $c=\operatorname{cd}(I, R)$. Show that for any R-module M, $\mathrm{H}_{I}^{c}(M) \cong \mathrm{H}_{I}^{c}(R) \otimes_{R} M$.
(3) Show that $\mathrm{H}_{I_{2}(X)}^{3}\left(\mathbb{Z}\left[X_{2 \times 3}\right]\right)$ is a \mathbb{Q}-vector space.
(4) Let R be Cohen-Macaulay. We showed in an earlier worksheet that for $\mathfrak{p} \subset R$ is prime, then $\operatorname{depth}_{\mathfrak{p}}(R)=\operatorname{height}(\mathfrak{p})$. Use this and the Mayer-Vietoris sequence to show that for general ideals $I \subset R, \operatorname{depth}_{I}(R)=\operatorname{height}(I)$.
(5) Show that if R is Cohen-Macaulay of dimension at least two, and I has height at least 1 , then $\operatorname{Spec}(R) \backslash \mathcal{V}(I)$ is connected.
(6) Compute the arithmetic rank of $I=(x u, x v, y u, y v z) \subseteq K[u, v, x, y, z]$, where K is a field.
(7) For two local rings $(R, \mathfrak{m}, k),(S, \mathfrak{n}, k)$ with the same residue field k (i.e., with a fixed isomorphism between the residue fields), the fiber product of R and S over k is

$$
R \times_{k} S:=\{(r, s) \in R \times S \mid r+\mathfrak{m}=s+\mathfrak{n} \text { in } k\} .
$$

Show that such a ring $R \times_{k} S$ is local, and has a disconnected punctured spectrum.
(8)-(9) Let K be a field, and $R=K[s, t, u, v, x, y] /\left(s v^{2} x^{2}-(s+t) v x u y+t u^{2} y^{2}\right)$. Let $\zeta_{n}=\left[\frac{s x y^{n}}{u v^{n}}\right] \in$ $\check{H}^{2}(u, v ; R)=\mathrm{H}_{(u, v)}^{2}(R)$.
(a) Show that $(u, v, x, y) \in \operatorname{ann}_{R}\left(\zeta_{n}\right)$ for each n.
(b) Let $S=K[s, t] \subseteq A=K[a=v x, b=u y, s, t] \subseteq R$. Show that A and R admit an \mathbb{N}^{3}-grading by $\operatorname{deg}(s)=\operatorname{deg}(t)=0, \operatorname{deg}(u)=(1,0,1), \operatorname{deg}(v)=(0,1,1), \operatorname{deg}(x)=(1,0,0), \operatorname{deg}(y)=(0,1,0)$.
(c) Show that for $g \in S, g \zeta_{n}=0$ if and only if $g a b^{n} \in\left(a^{n+1}, b^{n+1}\right)$.
(d) Show that $\left(a^{n+1}, b^{n+1}\right) A:_{S} a b^{n}=\left(s^{n}+s^{n-1} t+\cdots+s t^{n-1}+t^{n}\right)$.
(e) Compute the annihilator of ζ_{n} in R.
(f) Show that $\mathrm{H}_{(u, v)}^{2}(R)$ has infinitely many associated primes.

