Homework #4

Please write up and turn in at least *four* of the following problems at the beginning of class Monday, April 8.

(1) Find primary decompositions and compute the cohomological dimensions of

$$I = (u^{2} - x^{2}, v^{2} - y^{2}, w^{2} - z^{2}) \subseteq K[u, v, w, x, y, z]$$

and

$$J = (u^{2} - x^{2}, uv - xy, uw - xz, v^{2} - y^{2}, vw - yz, w^{2} - z^{2}) \subseteq K[u, v, w, x, y, z]$$

where K is a field of characteristic not equal to two.

- (2) Let R be a noetherian ring and I an ideal of R. Let c = cd(I, R). Show that for any R-module M, $H^c_I(M) \cong H^c_I(R) \otimes_R M$.
- (3) Show that $H^3_{L_2(X)}(\mathbb{Z}[X_{2\times 3}])$ is a Q-vector space.
- (4) Let R be Cohen-Macaulay. We showed in an earlier worksheet that for $\mathfrak{p} \subset R$ is prime, then $\operatorname{depth}_{\mathfrak{p}}(R) = \operatorname{height}(\mathfrak{p})$. Use this and the Mayer-Vietoris sequence to show that for general ideals $I \subset R$, $\operatorname{depth}_{I}(R) = \operatorname{height}(I)$.
- (5) Show that if R is Cohen-Macaulay of dimension at least two, and I has height at least 1, then $\operatorname{Spec}(R) \smallsetminus \mathcal{V}(I)$ is connected.
- (6) Compute the arithmetic rank of $I = (xu, xv, yu, yvz) \subseteq K[u, v, x, y, z]$, where K is a field.
- (7) For two local rings (R, \mathfrak{m}, k) , (S, \mathfrak{n}, k) with the same residue field k (i.e., with a fixed isomorphism between the residue fields), the *fiber product* of R and S over k is

 $R \times_k S := \{ (r, s) \in R \times S \mid r + \mathfrak{m} = s + \mathfrak{n} \text{ in } k \}.$

Show that such a ring $R \times_k S$ is local, and has a disconnected punctured spectrum.

- (8)-(9) Let K be a field, and $R = K[s, t, u, v, x, y]/(sv^2x^2 (s+t)vxuy + tu^2y^2)$. Let $\zeta_n = \begin{bmatrix} sxy^n \\ uv^n \end{bmatrix} \in \check{H}^2(u, v; R) = H^2_{(u,v)}(R)$.
 - (a) Show that $(u, v, x, y) \in \operatorname{ann}_R(\zeta_n)$ for each n.
 - (b) Let $S = K[s,t] \subseteq A = K[a = vx, b = uy, s, t] \subseteq R$. Show that A and R admit an \mathbb{N}^3 -grading by $\deg(s) = \deg(t) = 0$, $\deg(u) = (1,0,1)$, $\deg(v) = (0,1,1)$, $\deg(x) = (1,0,0)$, $\deg(y) = (0,1,0)$.
 - (c) Show that for $g \in S$, $g\zeta_n = 0$ if and only if $gab^n \in (a^{n+1}, b^{n+1})$.
 - (d) Show that $(a^{n+1}, b^{n+1})A :_S ab^n = (s^n + s^{n-1}t + \dots + st^{n-1} + t^n).$
 - (e) Compute the annihilator of ζ_n in R.
 - (f) Show that $H^2_{(u,v)}(R)$ has infinitely many associated primes.