Homework #3

Please write up and turn in at least four of the following problems at the beginning of class Monday, March 12.

- (1) Show that $\operatorname{cd}(I_2(X_{2\times 4}), \mathbb{C}[X_{2\times 4}]) = 5$ and find a prime \mathfrak{p} with $I_2(X_{2\times 4}) \subsetneq \mathfrak{p} \subset \mathbb{C}[X_{2\times 4}]$ and $\operatorname{cd}(\mathfrak{p}) = 4$.
- (2) Show that if (R, \mathfrak{m}, k) is local of dimension d and $R_{\mathfrak{p}}$ is Cohen-Macaulay for all $\mathfrak{p} \neq \mathfrak{m}$, then $\mathrm{H}^{i}_{\mathfrak{m}}(R)$ has finite length for all i < d.
- (3) Let (R, \mathfrak{m}, k) be a regular local ring, and $\mathfrak{p} \in \operatorname{Spec}(R)$ of height $h \neq 0, \dim(R)$. Show that $\operatorname{H}^h_{\mathfrak{p}}(R)$ is neither artinian nor noetherian.
- (4) This problem gives a proof that the invariant ring of SL₂ acting on $K[X_{2\times n}] = K \begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ y_1 & y_2 & \cdots & y_n \end{bmatrix}$ is generated by the minors $\{\Delta_{ij}\}$ of X, if K has characteristic zero.

Define for $1 \leq i, j \leq n$ the polarization operators $E_{ij} := x_i \frac{\partial}{\partial x_i} + y_i \frac{\partial}{\partial y_i}$.

- a) Show that each E_{ij} takes SL₂-invariants to SL₂-invariants.
- b) Show that each E_{ij} sends the subalgebra $K[\{\Delta_{ij} \mid 1 \le i < j \le n\}]$ to itself.
- c) Show that $K[X_{2\times n}]^{\mathrm{SL}_2}$ admits an \mathbb{N}^n -grading induced by the grading $|x_i| = |y_i| = \vec{e_i}$ on $K[X_{2\times n}]$.
- d) Prove Cappelli's identity:

$$\begin{vmatrix} E_{jj} + 1 & E_{ij} \\ E_{ji} & E_{ii} \end{vmatrix} = \begin{vmatrix} x_i & x_j \\ y_i & y_j \end{vmatrix} \circ \begin{vmatrix} \frac{\partial}{\partial x_i} & \frac{\partial}{\partial x_j} \\ \frac{\partial}{\partial y_i} & \frac{\partial}{\partial y_j} \end{vmatrix} ,$$

as differential operators on $K[X_{2\times n}]$, where $\|\star\|$ denotes determinant.

- e) Prove that $K[X_{2\times n}]^{\mathrm{SL}_2} = K[\{\Delta_{ij} \mid 1 \le i < j \le n\}].$
- (5) This problem gives a proof¹ of the graded local duality theorem. Let $R = K[x_1, \ldots, x_d]$ be an \mathbb{N} -graded polynomial ring, with deg $(x_i) = a_i$. Set $-a = a_1 + \cdots + a_d$.

For two graded R-modules, M and N, we set

 $\operatorname{Hom}_{R}(M,N)_{i} = \{\phi : M \to N \mid \phi \text{ is } R \text{-linear and } \phi(M_{j}) \subseteq N_{i+j} \text{ for all } j \},\$

and

$$\underline{\operatorname{Hom}}_{R}(M,N) = \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{R}(M,N)_{i}.$$

If M and N are finitely generated R-modules, then $\operatorname{Hom}_R(M, N) = \operatorname{Hom}_R(M, N)$ after forgetting the grading, and since M admits a graded free resolution by finitely generated modules, $\operatorname{Ext}^i_R(M, N)$ admits a natural grading. Similarly, $\operatorname{Tor}^R_i(M, N)$ admits a natural grading.

Define $(-)^*$ from graded *R*-modules to graded *R*-modules by the rule $M^* = \underline{\operatorname{Hom}}_K(M, K)$. From worksheet #2 we know that R^* is an injective hull for *K*, and from worksheet #3, we know that $\operatorname{H}^d_{\mathfrak{m}}(R) \cong R^*(-a)$ as graded modules.

a) Show that $M^* \cong \operatorname{Hom}_R(M, R^*)$ for any finitely generated graded *R*-module *M*.

- b) Show that if M is finitely generated over R, then $M^{**} \cong M$.
- c) Verify that $\mathrm{H}^{i}_{\mathfrak{m}}(M) \cong \mathrm{Tor}^{R}_{d-i}(M, R^{*}(-a)).$
- d) State the graded versions of the Ext–Tor dualities.
- e) Show that if M is a finitely generated graded R-module, then both dualities hold:

 $\mathrm{H}^{i}_{\mathfrak{m}}(M) \cong \mathrm{Ext}^{d-i}_{R}(M,R)^{*}(-a) \text{ and } \mathrm{H}^{i}_{\mathfrak{m}}(M)^{*} \cong \mathrm{Ext}^{d-i}_{R}(M,R)(a).$

(6)–(8) Problems #3, #5, and #6 from the worksheet on Gorenstein rings.

¹Note: The exact same arguments work for a graded ring R and integer a such that $\operatorname{H}^{d}_{\mathfrak{m}}(R) \cong R^{*}(-a)$.