Homework \#2

Please write up and turn in at least three of the following problems at the beginning of class Monday, February 19. You are strongly encouraged to work out the rest of them, as well.
(1) Compute a k-basis for $\mathrm{H}_{(x)}^{1}(k[x, y])$ and show that this module is neither noetherian nor artinian.
(2) Let $(V, p V, K)$ be a complete DVR with uniformizer $p \in \mathbb{Z}$. Let $R=V \llbracket x_{1}, \ldots, x_{t} \rrbracket$. Note that R is local of dimension $t+1$ with residue field K.
a) Use the Čech complex to show that $\mathrm{H}_{(p, \underline{v})}^{t+1}(R) \cong \bigoplus_{\underline{\alpha}: \alpha_{i}<0} \frac{V[1 / p]}{V} \cdot \underline{x}^{\underline{\alpha}}$.
b) Show that $\operatorname{Hom}_{V}^{(\underline{x})-c t s}\left(R, E_{V}(K)\right) \cong \operatorname{Hom}_{V}^{(\underline{x})-\mathrm{cts}}\left(R, \frac{V[1 / p]}{V}\right)$ is an injective hull for K as an R-module. Use this description to show that $E_{R}(K) \cong \mathrm{H}_{(p, \underline{x})}^{t+1}(R)$.
(3) Let (R, \mathfrak{m}, k) be a complete local ring.
a) Show that if $R \hookrightarrow M$ splits, then $R \otimes_{R} N \longrightarrow M \otimes_{R} N$ is injective for all R-modules N.
b) Show that if $R \otimes_{R} E_{R}(k) \longrightarrow M \otimes_{R} E_{R}(k)$ is injective, then $R \hookrightarrow M$ splits. (Moral: $E_{R}(k)$ is the "least flat" module.)
(4) Problem \#4 from worksheet $\# 3$.
(5) a) Give an example of a sequence of elements f_{1}, \ldots, f_{t} in a ring R and an integer i such that $\mathrm{H}^{i}\left(f_{1}^{n}, \ldots, f_{t}^{n} ; R\right) \neq 0$ for all n, but $\mathrm{H}_{\left(f_{1}, \ldots, f_{t}\right)}^{i}(R)=0$.
b) Give an example of an ideal I in a ring R, and R-module M, and an integer j such that $\operatorname{Ext}_{R}^{j}\left(R / I^{n}, M\right) \neq 0$ for all n, but $\mathrm{H}_{I}^{j}(M)=0$.
(6) Show that if R is a regular ring of dimension d, the minimal injective resolution of R is of the form

$$
0(\rightarrow R) \rightarrow E_{R}(R) \rightarrow \bigoplus_{\mathrm{ht}=1} E_{R}(R / \mathfrak{p}) \rightarrow \bigoplus_{\mathrm{h} \mathfrak{p}=2} E_{R}(R / \mathfrak{p}) \rightarrow \cdots \rightarrow \bigoplus_{\mathrm{ht} \mathfrak{p}=d} E_{R}(R / \mathfrak{p}) \rightarrow 0
$$

(7) Use the previous problem to show that if R is regular and $\mathrm{ht}(I)=h$, then

$$
\operatorname{Ass}\left(\mathrm{H}_{I}^{h}(R)\right)=\{\mathfrak{p} \in \operatorname{Min}(I) \mid \text { ht } \mathfrak{p}=h\} .
$$

