Homework \#1

Please write up and turn in at least four of the following problems at the beginning of class Monday, February 5. You are strongly encouraged to work out the rest of them, as well.
(1) Let k be a field. Find a free resolution of $M=k[x, y] /(y)$ over $R=k[x, y] /(x y)$. Use it to compute $\operatorname{Ext}_{R}^{i}(M, k)$ for all $i \geq 0$, where we interpret k as a module via $k \cong R /(x, y)$.
(2) Use the definition of Cohen-Macaulay to show that

$$
R=\frac{k\left[\begin{array}{lll}
u & v & w \\
x & y & z
\end{array}\right]_{\mathfrak{m}}}{(u y-v x, u z-w x, v z-w y)}
$$

is Cohen-Macaulay, where \mathfrak{m} is the ideal generated by the (images of the) variables. ${ }^{1}$
(3) Find a free resolution of the cyclic module $M=R /(u y-v x, u z-w x, v z-w y)$ over

$$
R=k\left[\begin{array}{lll}
u & v & w \\
x & y & z
\end{array}\right]_{\mathfrak{m}}
$$

Compute $\operatorname{Ext}_{R}^{i}(M, R)$ for all $i \geq 0$.
One possibility to find a free resolution is to follow the following steps:

- Compute $\operatorname{det}\left[\begin{array}{lll}u & v & w \\ u & v & w \\ x & y & z\end{array}\right]$ by expanding the first row.
- Use \#2 and Auslander-Buchsbaum to determine the projective dimension of M, and determine the rank of the remaining free modules.
(4) Let R be a local ring. A f.g. module is called maximal Cohen-Macaulay or $M C M$ if depth $M=$ $\operatorname{dim} R$. Show that, if R has an MCM module, R is regular if and only if every f.g. MCM module over R is free.
(5) Compute the minimal injective resolution of $\mathbb{C}[x]$ as a $\mathbb{C}[x]$-module. Write each injective as a direct sum of indecomposable injectives. Use this to compute $\mathrm{H}_{(x)}^{i}(\mathbb{C}[x])$.
(6) Let R be a Noetherian ring, I an ideal of R, and E an injective R-module. Show that $\Gamma_{I}(E)$ is injective, and compute its direct sum decomposition into indecomposables in terms I and the direct sum decomposition of E.
(7) Let $(A, \nu) \rightarrow(R, \mathfrak{m})$ be a local homomorphism ${ }^{2}$ of local rings. Assume that $A / \nu \cong R / \mathfrak{m}$. Suppose that there exists an ideal J of R such that the composed map $A \rightarrow R \rightarrow R / J$ is an isomorphism. ${ }^{3}$ Show that $E_{R}(R / \mathfrak{m}) \cong \operatorname{Hom}_{A}^{J-c t s}\left(R, E_{A}(A / \nu)\right)$. Use this to give an explicit description of $E_{R}(R / \mathfrak{m})$ when $R=\mathbb{Z}_{p} \llbracket \underline{x} \rrbracket$, where \mathbb{Z}_{p} denotes the p-adic integers.
(8) Problem \#1 from the worksheet on Koszul homology and CM rings
(9) Problem \#3 from the worksheet on Matlis duality with coefficient fields

[^0]
[^0]: ${ }^{1}$ If you get stuck at step 1 , assume that R is a domain. Of course, it's better to prove R is a domain.
 ${ }^{2}$ This means that the image of ν is contained in \mathfrak{m}.
 ${ }^{3}$ We call A a ring retract of R in this setting.

