Homework #1

Please write up and turn in at least *four* of the following problems at the beginning of class Monday, February 5. You are strongly encouraged to work out the rest of them, as well.

- (1) Let k be a field. Find a free resolution of M = k[x,y]/(y) over R = k[x,y]/(xy). Use it to compute $\operatorname{Ext}_{R}^{i}(M,k)$ for all $i \geq 0$, where we interpret k as a module via $k \cong R/(x,y)$.
- (2) Use the definition of Cohen-Macaulay to show that

$$R = \frac{k \begin{bmatrix} u & v & w \\ x & y & z \end{bmatrix}_{\mathfrak{m}}}{(uy - vx, uz - wx, vz - wy)}$$

is Cohen-Macaulay, where \mathfrak{m} is the ideal generated by the (images of the) variables.¹

(3) Find a free resolution of the cyclic module M = R/(uy - vx, uz - wx, vz - wy) over

$$R = k \begin{bmatrix} u & v & w \\ x & y & z \end{bmatrix}_{\mathfrak{m}}$$

Compute $\operatorname{Ext}_{R}^{i}(M, R)$ for all $i \geq 0$.

One possibility to find a free resolution is to follow the following steps:

- Compute det $\begin{bmatrix} u & v & w \\ u & v & w \\ x & y & z \end{bmatrix}$ by expanding the first row.
- Use #2 and Auslander-Buchsbaum to determine the projective dimension of M, and determine the rank of the remaining free modules.
- (4) Let R be a local ring. A f.g. module is called *maximal Cohen-Macaulay* or MCM if depth $M = \dim R$. Show that, if R has an MCM module, R is regular if and only if every f.g. MCM module over R is free.
- (5) Compute the minimal injective resolution of $\mathbb{C}[x]$ as a $\mathbb{C}[x]$ -module. Write each injective as a direct sum of indecomposable injectives. Use this to compute $\mathrm{H}^{i}_{(x)}(\mathbb{C}[x])$.
- (6) Let R be a Noetherian ring, I an ideal of R, and E an injective R-module. Show that $\Gamma_I(E)$ is injective, and compute its direct sum decomposition into indecomposables in terms I and the direct sum decomposition of E.
- (7) Let $(A,\nu) \to (R,\mathfrak{m})$ be a local homomorphism² of local rings. Assume that $A/\nu \cong R/\mathfrak{m}$. Suppose that there exists an ideal J of R such that the composed map $A \to R \to R/J$ is an isomorphism.³ Show that $E_R(R/\mathfrak{m}) \cong \operatorname{Hom}_A^{J-\operatorname{cts}}(R, E_A(A/\nu))$. Use this to give an explicit description of $E_R(R/\mathfrak{m})$ when $R = \mathbb{Z}_p[\underline{x}]$, where \mathbb{Z}_p denotes the p-adic integers.
- (8) Problem #1 from the worksheet on Koszul homology and CM rings
- (9) Problem #3 from the worksheet on Matlis duality with coefficient fields

¹If you get stuck at step 1, assume that R is a domain. Of course, it's better to prove R is a domain.

²This means that the image of ν is contained in \mathfrak{m} .

³We call A a *ring retract* of R in this setting.