Math 614, Fall 2018, Homework \#4

Some basic M2 commands:

- ideal () turns a list of elements into the ideal they generate.
- If R is a ring and I is an ideal, form the quotient ring by R / I.
- If R is a quotient of a polynomial ring with generators $x _1, \ldots$, $x _n$, and S is another ring, then $\operatorname{map}\left(S, R,\left\{a_{-} 1, \ldots, \quad a_{-} n\right\}\right)$ is the homomorphism from R to S sending the image of $x_{-} i$ to a_i.
- $\operatorname{ker}(\quad)$ returns the kernel of a map.
- primaryDecomposition() of an ideal gives a primary decomposition.
- ass () of an ideal returns the set of associated primes of R/I.
- I : f computes the colon ideal $I: f$.

Use Macaulay2 to help solve the following problems.
(1) Find presentations ${ }^{1}$ for the following \mathbb{Q}-algebras.
(a) $R=\mathbb{Q}\left[x^{3}, x^{4}, x^{5}\right] \subseteq \mathbb{Q}[x]$.
(b) $S=\mathbb{Q}\left[x^{3}, x^{4}, x^{5}, y, x y\right] \subseteq \mathbb{Q}[x, y]$.
(c) $T=\mathbb{Q}\left[x^{2}, x^{3}-x, y, x y\right] \subseteq \mathbb{Q}[x, y]$.
(d) $U=\mathbb{Q}\left[\begin{array}{lll}u x & u y & u z \\ v x & v y & v z\end{array}\right] \subseteq \frac{\mathbb{Q}[u, v, x, y, z]}{\left(x^{3}+y^{3}+z^{3}\right)}$.
(2) Find the associated primes and primary decompositions of the following ideals.
(a) $I=\left(u^{2}-x^{2}, v^{2}-y^{2}, u v-x y\right) \subseteq \mathbb{Q}[x, y, u, v]$.
(b) The square of the ideal $I_{2}\left(X_{3 \times 3}\right)$ of 2×2 minors of a 3×3 matrix of indeterminates.
(c) The ideal ($u x, u y$) in the ring U above.
(3) For the ideal \mathfrak{p} you found in $\# 1(a)$, find elements in $\mathfrak{p}^{(2)} \backslash \mathfrak{p}^{2}$ and in $\mathfrak{p}^{(3)} \backslash \mathfrak{p}^{3}$.
(4) For each of the following homomorphisms and primes in the source, find a prime that contracts to it, or else show that no prime contracts to it.
(a) The inclusion map

$$
\mathbb{Q}\left[\Delta_{12}, \Delta_{13}, \Delta_{14}, \Delta_{23}, \Delta_{24}, \Delta_{34}\right] \subseteq \mathbb{Q}\left[X_{2 \times 4}\right]
$$

where $X_{2 \times 4}$ is a 2×4 matrix of indeterminates, and $\Delta_{i j}$ is the 2×2 minor coming from columns i and j, with the prime $\mathfrak{p}=\left(\Delta_{12}, \Delta_{13}, \Delta_{14}\right)$. Check that \mathfrak{p} is prime!
(b) The inclusion map $\mathbb{Q}[x, y, z] \subseteq \frac{\mathbb{Q}[x, y, z, u, v, w]}{\left(z^{2}+y v^{2}+w^{2}, u^{2} x+w^{2}+4 u^{2} y\right)}$, with the primes $\mathfrak{p}_{1}=$ $(x, y), \mathfrak{p}_{2}=(x, z), \mathfrak{p}_{3}=(y, z)$.

[^0]
[^0]: ${ }^{1}$ That is, express each of the following as a quotient of a polynomial ring by an explicit ideal.

