Math 614, Fall 2018, Homework #4

Some basic M2 commands:

- ideal() turns a list of elements into the ideal they generate.
- If R is a ring and I is an ideal, form the quotient ring by R/I.
- If R is a quotient of a polynomial ring with generators x_1, \ldots, x_n , and S is another ring, then map(S,R,{a_1,..., a_n }) is the homomorphism from R to S sending the image of x_i to a_i.
- ker() returns the kernel of a map.
- primaryDecomposition() of an ideal gives a primary decomposition.
- ass() of an ideal returns the set of associated primes of R/I.
- I : f computes the colon ideal I : f.

Use Macaulay2 to help solve the following problems.

(1) Find presentations¹ for the following \mathbb{Q} -algebras.

(a)
$$R = \mathbb{Q}[x^3, x^4, x^5] \subseteq \mathbb{Q}[x].$$

(b) $S = \mathbb{Q}[x^3, x^4, x^5, y, xy] \subseteq \mathbb{Q}[x, y].$
(c) $T = \mathbb{Q}[x^2, x^3 - x, y, xy] \subseteq \mathbb{Q}[x, y].$
(d) $U = \mathbb{Q}\begin{bmatrix}ux & uy & uz\\vx & vy & vz\end{bmatrix} \subseteq \frac{\mathbb{Q}[u, v, x, y, z]}{(x^3 + y^3 + z^3)}$

- (2) Find the associated primes and primary decompositions of the following ideals.
 - (a) $I = (u^2 x^2, v^2 y^2, uv xy) \subseteq \mathbb{Q}[x, y, u, v].$
 - (b) The square of the ideal $I_2(X_{3\times 3})$ of 2×2 minors of a 3×3 matrix of indeterminates.
 - (c) The ideal (ux, uy) in the ring U above.
- (3) For the ideal \mathfrak{p} you found in $\#1(\mathfrak{a})$, find elements in $\mathfrak{p}^{(2)} \smallsetminus \mathfrak{p}^2$ and in $\mathfrak{p}^{(3)} \backsim \mathfrak{p}^3$.
- (4) For each of the following homomorphisms and primes in the source, find a prime that contracts to it, or else show that no prime contracts to it.
 - (a) The inclusion map

$$\mathbb{Q}[\Delta_{12}, \Delta_{13}, \Delta_{14}, \Delta_{23}, \Delta_{24}, \Delta_{34}] \subseteq \mathbb{Q}[X_{2\times 4}]$$

where $X_{2\times 4}$ is a 2 × 4 matrix of indeterminates, and Δ_{ij} is the 2 × 2 minor coming from

columns *i* and *j*, with the prime $\mathbf{p} = (\Delta_{12}, \Delta_{13}, \Delta_{14})$. Check that \mathbf{p} is prime! (b) The inclusion map $\mathbb{Q}[x, y, z] \subseteq \frac{\mathbb{Q}[x, y, z, u, v, w]}{(z^2 + yv^2 + w^2, u^2x + w^2 + 4u^2y)}$, with the primes $\mathbf{p}_1 =$ $(x, y), \mathfrak{p}_2 = (x, z), \mathfrak{p}_3 = (y, z).$

¹That is, express each of the following as a quotient of a polynomial ring by an explicit ideal.