Homework #3 volunteered solutions

Problem 1. Show that cd(I2(Xaxa), C[Xox4]) = 5 and find a prime p with I5(Xoxs) € p C C[Xay4] and
cd(p) =

Solution 1.

Lemma 1. Let R C S be an inclusion of noetherian rings that splits as R-modules, and I C R be an
ideal. Then cd(I, R) = cd(IS,S)

Proof. We have that cd(I, R) > cd(I,S5) = c¢d(IS,S5) in general. Since R is a direct summand of S,
H%(R) is a direct summand of H%(S) = Hi4(S) for all 4. This gives the other inequality. O

We know that C[Xo,4]52(®) = C[{A;; | 1 <i < j < 4}] is a direct summand of C[Xyy4]. From this
lemma, we know that cd(l2(Xaxa), C[Xox4]) = cd(({Ai;}), C[{Ai;}]), and since ({A;;}) is a maximal
ideal, this cohomological dimension is just the dimension of the f.g. domain C[{A;;}].

The dimension is at least 5, since, after specializing x1; — 1, 12 — 0, 227 — 0, the minors become

)
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X922, X23, L24, L1322, L14T22, A347

and the first five are obviously algebraically independent.
The dimension is at most 5 since the minors satisfy the relation A19Asy + A13A04 + A4 3.
Finally, note that p = (x11, Z12, 13, T14) 2 [2(Xox4), and cd(p) = 4.

Problem 2. Show that if (R,m,k) is local of dimension d and R, is Cohen-Macaulay for all p # m,
then H; (R) has finite length for all i < d.

Solution 2.

Problem 3. Let (R,m, k) be a regular local ring, and p € Spec(R) of height h # 0,dim(R). Show that
H;j (R) is neither artinian nor noetherian.

Solution 3 (Eamon Quinlian). For simplicity denote H = H%(R). Let us first show that H is not
finitely generated (i.e. noetherian). If it was then Hp = Hpg (Rp) would be finitely generated over
Rp. Observe that since R is regular so is Rp, and that since P # 0 Rp has positive dimension. We thus
reduce to the following claim.

Claim.- Let (S, n, L) be a regular local ring of dimension d > 0. Then H%(S) is not finitely generated.

Proof of Claim: We may assume S is complete. Recall that because S is regular H4(S) = Eg(L)
and hence, by completeness, H?(S)V = S. Since S is positive-dimensional, S is not artinian. Therefore,
HZ(S) = SY is not finitely-generated. OJ

We now show that H is not artinian. First observe that as Hp # 0 by the above considerations,
H # 0. Thus we may pick some 0 # « € H and denote by N the submodule generated by «. It suffices
to show that N is not artinian.

Since Ass(H) = {P} (HW2 #7), we have that Ass(N) = {P}. As N is finitely-generated all elements
of m\ P are nonzerodivisors. As P # m we may pick one such y € m\ P. The following claim concludes
the exercise.

Claim.- The chain N D yN D y?N D --- does not stabilize.

Proof of Claim: As y is a nonzerodivisor, if y" N = y" "N for some n then N = yN. As y € m this
would imply N = mN, thus N = 0 by Nakayama’s lemma — a contradiction.
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Problem 4. This problem gives a proof that the invariant ring of SLy acting on K[Xox,| = K L/ y
1 Y2

is generated by the minors {A;;} of X, if K has characteristic zero.
Define for 1 <1i,j < n the polarization operators F;; := xi% + yiaiy.
J J

(1) Show that each E;; takes SLa-invariants to SLy-invariants.
1
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(2) Show that each E;; sends the subalgebra K[{A;; | 1 <i < j <n}] to itself.
(3) Show that K[Xoxn)>™2 admits an N"-grading induced by the grading |z;| = |y;| = €& on K[Xoxn).
(4) Prove Cappelli’s identity:

o 0
‘ Ej+1 Ej Ti il ||oe Bay
- o) o) )
E;i By Yi Yj 9y oy

as differential operators on K|[Xoy,|, where || x || denotes determinant.
(5) Prove that K[Xoxn)? = K[{Ay; | 1 <i<j<n}.

Solution 4 (Zhan Jiang). (1) Let f(z,y) be an SLy-invariant element. Then we want to show that
E;;(f) is also SLo-invariant. Let ¢ = (CCL 2) be an element in SLy and write 2} = ax; + by; and

yi = cx; + dy;. We also write 0F f := g—i and 0Y f := g—?fi for 1 <1 <n.
On one hand, we have

O(Eij(f)) = d(:07 f + y:9] f)
=207 (', y) +4:0) f (2, y)

On the other hand, we have

Eij(o(f)) = 20 (f) + yi0i o(f)
= (az;0; f(2, ) + cx; 0! f(2',y)) + (byi0 f (2, y') + dyi0] f (2, ')
= (ax; +by)0j [ (2, y') + (ca; + dy;)0Y f(2',y)
= z;0; f(2/, y) + ;0] f(2. )

Hence ¢(E;;(f)) = Eij(#(f)). So if ¢(f) = f, then ¢(Ey;(f)) = Ey(f).
(2) It’s quite easy to see that Ej; is a differential operator, hence if it maps each generator back to
the subalgebra, then it sends everything in the subalgebra to itself.
Write A;; = z;y; — x;y;, and apply Ej; we have

Eij(Ajr) = A
Eij(Ap) =

So we're done.
(3) For any ¢ = g

homogeneous and it’s the same for y; — cx;+dy;. Soif f is SLs invariant, then each homogeneous
part has to be invariant. So K [XQXTL]SL2 admints the grading.
(4) We have to prove

in SLg, since a,b cannot be both zero. The action z; — ax; + by; is

(Ejj +1) o By — Ejjo By = (zy; — 255:) (070 — 070)

By using the relations that all operators are commutative except that [0F,z;] = 1 and



(Ejj +1) 0 By — Ejj o Eji =(2;07 4+ y;0] + 1) o (2:0] +4:0}) — (2:9] + 4:0]) o (2;07 + y;07)
— 0,0 — 21,0007 — w080 — yiw; V08 — .0 — yiy; 040!
=(zyi — 2:y;)0; 0] + (yjzi — yiz;)00F
=(xiy; — x;5:)(07 0] — 97 07)
(5) For notational reason write R = K [{Aij|1 <i<j< n}} and S = K [ngn]SLQ. Since both are
graded rings, we only need to show that all homogeneous elements in S are in R. We first prove
following lemma:

Lemma: For any nonzero homogeneous element f € S, the degree of f cannot be k - ¢, for
any natural number k. In other words, f cannot be an element in K[x;, y;].

Proof. Suppose f € K [z;,y;], then we can write

f=coxf +ciaf tyi+ o+ oyl

where ¢; € K. After apply (8 19@) € SLy to f we get
colaz;)® + c1(az) (yi/a) + - + cr(yifa)* =coxt + crab "y + -+t
< Cj :cjak’%

for any nonzero a € K. Since K has char 0 and hence it has infinitely many elements. We
conclude that ¢; = 0 for all . But then f is zero. O

Now we are ready to prove R = S. If a homogeneous element f € S is of degree a1 €1 +a, €,
call a; + -+ - + a, the total degree of f. Choose a homogeneous element f € S\ R with smallest
possible total degree. Assume WLOG that deg(f) = a1 €1+ +a ¢, for some 1 <1 < h with
all a; > 0.

If f involves z; or y;, then easy calculation shows that deg(E;;(f)) = deg(f) + 7 — ?j
if £;;(f) # 0. Hence by appyling Fy; (1 < i < [) a; times consectively for each ¢ we can
find an element of homogeneous degree k¢, which is impossible by Lemma. So there is some
intermediate step f; such that f; # 0 but Ey;(f;) = 0 € R. This tells us that we can find an
intermediate step fo such that fo &€ R but Ey;(f2) € R. Now apply Cappelli’s operator

Ell + 1 Ejl

By Ej =Aneb

to fo. We have
(En + 1 E;;(f2) = EpEry(f2) = An(D(f2))

Note that D(f2) has smaller total degree, so it must be in R, therefore RHS is in R. Since
E1;(f2) € R by our choice, so is Ej1 Ey;(f2). Hence we have (Ey; + 1)E;;(f2) € R.

But if we write f, as

fo= fuxl + faa@lly 4o+ fouf
where fy, fn—1,... doesn’t involve x; or y;. Then easy calculation shows that
Ejj(f2) = hfe

Hence the operator (E1; + 1)Ej; acts as a nonzero scalar on fo, which implies that fo € R, a
contradiction! So there is no such f € S\ R for us to start. Hence R = S.
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Problem 5. This problem gives a proof of the graded local duality theorem. Let R = Klxy, ..., x4] be
an N-graded polynomial ring, with deg(x;) = a;. Set —a = ay + -+ - + aq. From worksheet #2 we know
that R* is an injective hull for K, and from worksheet #3, we know that H%(R) = R*(—a) as graded
modules.

(1) Show that M* = Hompg(M, R*) for any finitely generated graded R-module M.
(2) Show that if M is finitely generated over R, then M** = M.

(3) Verify that H: (M) = Tor¥ (M, R*(—a)).

(4) State the graded versions of the Ext—Tor dualities.

(5) Show that if M is a finitely generated graded R-module, then both dualities hold:

H! (M) = Exth “(M, R)*(—a) and H. (M)* = Ext% (M, R)(a).
Solution 5 (Zhan Jiang). (1) If we forget grading, then
Homp(M,Homg (R, K)) = Homg (M ®r R, K) = Homg (M, K)

So the only thing remains to show is that this isomorphism is degree-preserving.
Let o € M* be a homogeneous element of degree 4, i.e. «(M;) C J;;. The identification
above is given by
a— (u— o)

where «, : 7 — a(ru). For any homogeneous element u € M of degree k, we want to determine
the degree of the map «a,. For any homogeneous element r € R of degree [, a,(r) = a(ru) €
Kii1i So o, € Homg (R, K)g1i. So the map u — «, is of degree i. So this is a degree-preserving
isomorphism.

(2) There is a natural map

M%MKG—IO_IDK(MaK)aK)
u = ey (¢ = o(u))

We check that this preserves degree: let u € M be a homogeneous element of degree k, then
we want to show that e, is of degree k, i.e. e,(Homg (M, K);) C K;1x. Let ¢ be a homogeneous
element in Homg (M, K);, since u € My, we have ¢(u) € Ky;. Hence e, (Homg (M, K); C Ky
So it’s of degree k.

Notice that the only nonzero part of K is Ky, so e, maps Homg (M, K)_; = Homg (M, K)
to K and other degrees to zero. Hence e, € Homg(Homg (Mg, K), K). So the natural map
above restricts to a K-linear map fi : M, — Homg(Homg (M, K), K). Note that if M is
finitely generated, then each M, is a finite-dimensional K-vector space. The natural map fj is
an isomorphism. So the natural map at the beginning is an isomorphism.

(3) The Cech complex is a graded flat resolution of R*(—a). Since both sides are obtained by
tensoring with M and taking (co)homology, they are literally the same graded module.

(4) Under the assumption above, for any finitely generated graded R-modules M and N,
(a) Tor;"(M, N)* = Exth (M, N*)
(b) Torf(M, N*) = Extyy(M, N)*

(5) By duality above, we have Tor (M, R*) = Ext»(M, R)* so then Tor! (M, R*)(—a) = Extz(M, R)*(—a).
Since shifting degree commutes with tensor and taking (co)homology, we have Tor (M, R*)(—a) =
Torf (M, R*(—a)) = H®(M). Combine all these we have

H:, (M) = Extts (M, R (~a)
Apply graded dual (—)* we have
Hi (M)* = (Extd (M, R)*(—a))" = Extd (M, R)™(a) = Exti (M, R)(a)

Problem 6. Show that if R is a Gorenstein local ring, and M is a finitely generated R-module, then M
has finite projective dimension if and only if M has finite injective dimension.



Solution 6. First we observe the following fact: if
0O—=L—-M-—=N=0

is a short exact sequence of (not necessarily f.g.) modules, and Tor%,(k,—) = 0 for two of the three
modules, then likewise for the third. Similarly, if Ext3(k, —) = 0 for two of the three modules, then
likewise for the third. Both of these facts follow immediately from the long exact sequence.

Let M be a f.g. module of finite projective dimension. Then M has a finite free resolution. We claim
that Extﬁo(k, M) = 0. We induce on the projective dimension of M. Indeed, if M is free, then the
injective dimension of M = R®“ is finite, by the Gorenstein hypothesis. Otherwise, take a SES

O—L—F—>M-—0

with F' free; the projective dimension of L is smaller than that of M. By the observation above, and the
induction hypothesis applied to L, the claim follows. Then, since Ext7°(k, M) = 0 and M is finitely
generated, the injective dimension of M is finite.

Now, let M be a f.g. module of finite injective dimension, so M has a finite injective resolution.
We claim that Torgo(k, M) = 0. We induce on the injective dimension of M. To deal with the base
case, it suffices to show that Torfdim(Rp)(k,ER(R/p)) = 0 for any prime p. Since R, is Gorenstein,

Er(R/p) = Eg,(R,/pR,) = HSE:(R”)(RP), which has a resolution of length dim(R,) by flat modules,

namely, C*( f; Ry) for a SOP f of R,. Since Tor can be computed by flat resolutions, this takes care of
the base case. Otherwise, take a SES

0— M — Er(M) — N — 0;

the injective dimension of N is smaller than that of M. By the observation above and the inductive
hypothesis, the inductive step, and hence also the claim, follows. Then, since Torf;o(k:, M)=0and M
is finitely generated, the projective dimension of M is finite.



