Problem 1. Show that $cd(I_2(X_{2\times 4}), \mathbb{C}[X_{2\times 4}]) = 5$ and find a prime \mathfrak{p} with $I_2(X_{2\times 4}) \subsetneq \mathfrak{p} \subset \mathbb{C}[X_{2\times 4}]$ and $cd(\mathfrak{p}) = 4$.

Solution 1.

Lemma 1. Let $R \subseteq S$ be an inclusion of noetherian rings that splits as R-modules, and $I \subseteq R$ be an ideal. Then cd(I, R) = cd(IS, S)

Proof. We have that $cd(I, R) \ge cd(I, S) = cd(IS, S)$ in general. Since R is a direct summand of S, $H_I^i(R)$ is a direct summand of $H_I^i(S) \cong H_{IS}^i(S)$ for all *i*. This gives the other inequality. \Box

We know that $\mathbb{C}[X_{2\times 4}]^{\mathrm{SL}_2(\mathbb{C})} = \mathbb{C}[\{\Delta_{ij} \mid 1 \leq i < j \leq 4\}]$ is a direct summand of $\mathbb{C}[X_{2\times 4}]$. From this lemma, we know that $\mathrm{cd}(I_2(X_{2\times 4}), \mathbb{C}[X_{2\times 4}]) = \mathrm{cd}((\{\Delta_{ij}\}), \mathbb{C}[\{\Delta_{ij}\}])$, and since $(\{\Delta_{ij}\})$ is a maximal ideal, this cohomological dimension is just the dimension of the f.g. domain $\mathbb{C}[\{\Delta_{ij}\}]$.

The dimension is at least 5, since, after specializing $x_{11} \mapsto 1$, $x_{12} \mapsto 0$, $x_{21} \mapsto 0$, the minors become

 $x_{22}, x_{23}, x_{24}, x_{13}x_{22}, x_{14}x_{22}, \Delta_{34},$

and the first five are obviously algebraically independent.

The dimension is at most 5 since the minors satisfy the relation $\Delta_{12}\Delta_{34} + \Delta_{13}\Delta_{24} + \Delta_{14}\Delta_{23}$. Finally, note that $\mathbf{p} = (x_{11}, x_{12}, x_{13}, x_{14}) \supseteq I_2(X_{2\times 4})$, and $\operatorname{cd}(\mathbf{p}) = 4$.

Problem 2. Show that if (R, \mathfrak{m}, k) is local of dimension d and $R_{\mathfrak{p}}$ is Cohen-Macaulay for all $\mathfrak{p} \neq \mathfrak{m}$, then $\mathrm{H}^{i}_{\mathfrak{m}}(R)$ has finite length for all i < d.

Solution 2.

Problem 3. Let (R, \mathfrak{m}, k) be a regular local ring, and $\mathfrak{p} \in \operatorname{Spec}(R)$ of height $h \neq 0, \dim(R)$. Show that $\operatorname{H}^{h}_{\mathfrak{p}}(R)$ is neither artinian nor noetherian.

Solution 3 (Eamon Quinlian). For simplicity denote $H = H_P^h(R)$. Let us first show that H is not finitely generated (i.e. noetherian). If it was then $H_P = H_{PR_P}^h(R_P)$ would be finitely generated over R_P . Observe that since R is regular so is R_P , and that since $P \neq 0$ R_P has positive dimension. We thus reduce to the following claim.

Claim.- Let (S, n, L) be a regular local ring of dimension d > 0. Then $H_n^d(S)$ is not finitely generated. *Proof of Claim:* We may assume S is complete. Recall that because S is regular $H_n^d(S) = E_S(L)$ and hence, by completeness, $H_n^d(S)^{\vee} = S$. Since S is positive-dimensional, S is not artinian. Therefore, $H_n^d(S) = S^{\vee}$ is not finitely-generated. \square

We now show that H is not artinian. First observe that as $H_P \neq 0$ by the above considerations, $H \neq 0$. Thus we may pick some $0 \neq \alpha \in H$ and denote by N the submodule generated by α . It suffices to show that N is not artinian.

Since $Ass(H) = \{P\}$ (HW2 #7), we have that $Ass(N) = \{P\}$. As N is finitely-generated all elements of $m \setminus P$ are nonzerodivisors. As $P \neq m$ we may pick one such $y \in m \setminus P$. The following claim concludes the exercise.

Claim.- The chain $N \supseteq yN \supseteq y^2N \supseteq \cdots$ does not stabilize.

Proof of Claim: As y is a nonzerodivisor, if $y^n N = y^{n+1}N$ for some n then N = yN. As $y \in m$ this would imply N = mN, thus N = 0 by Nakayama's lemma – a contradiction.

Problem 4. This problem gives a proof that the invariant ring of SL₂ acting on $K[X_{2\times n}] = K \begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ y_1 & y_2 & \cdots & y_n \end{bmatrix}$

is generated by the minors $\{\Delta_{ij}\}$ of X, if K has characteristic zero. Define for $1 \leq i, j \leq n$ the polarization operators $E_{ij} := x_i \frac{\partial}{\partial x_i} + y_i \frac{\partial}{\partial y_j}$.

(1) Show that each E_{ij} takes SL_2 -invariants to SL_2 -invariants.

- (2) Show that each E_{ij} sends the subalgebra $K[\{\Delta_{ij} \mid 1 \leq i < j \leq n\}]$ to itself.
- (3) Show that $K[X_{2\times n}]^{\mathrm{SL}_2}$ admits an \mathbb{N}^n -grading induced by the grading $|x_i| = |y_i| = \vec{e_i}$ on $K[X_{2\times n}]$. (4) Prove Cappelli's identity:

$$\begin{vmatrix} E_{jj} + 1 & E_{ij} \\ E_{ji} & E_{ii} \end{vmatrix} = \begin{vmatrix} x_i & x_j \\ y_i & y_j \end{vmatrix} \circ \begin{vmatrix} \frac{\partial}{\partial x_i} & \frac{\partial}{\partial x_j} \\ \frac{\partial}{\partial y_i} & \frac{\partial}{\partial y_j} \end{vmatrix}$$

as differential operators on $K[X_{2\times n}]$, where $\|\star\|$ denotes determinant. (5) Prove that $K[X_{2\times n}]^{\mathrm{SL}_2} = K[\{\Delta_{ij} \mid 1 \le i < j \le n\}].$

Solution 4 (Zhan Jiang). (1) Let $f(\underline{x}, y)$ be an SL₂-invariant element. Then we want to show that $E_{ij}(f)$ is also SL₂-invariant. Let $\phi = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an element in SL₂ and write $x'_i = ax_i + by_i$ and $y'_i = cx_i + dy_i$. We also write $\partial_i^x f := \frac{\partial f}{\partial x_i}$ and $\partial_i^y f := \frac{\partial f}{\partial y_i}$ for $1 \le i \le n$.

On one hand, we have

$$\phi(E_{ij}(f)) = \phi(x_i \partial_j^x f + y_i \partial_j^y f)$$

= $x'_i \partial_j^x f(\underline{x}', \underline{y}') + y'_i \partial_j^y f(\underline{x}', \underline{y}')$

On the other hand, we have

$$E_{ij}(\phi(f)) = x_i \partial_j^x \phi(f) + y_i \partial_j^y \phi(f)$$

= $(ax_i \partial_j^x f(\underline{x}', \underline{y}') + cx_i \partial_j^y f(\underline{x}', \underline{y}')) + (by_i \partial_j^x f(\underline{x}', \underline{y}') + dy_i \partial_j^y f(\underline{x}', \underline{y}'))$
= $(ax_i + by_i) \partial_j^x f(\underline{x}', \underline{y}') + (cx_i + dy_i) \partial_j^y f(\underline{x}', \underline{y}')$
= $x'_i \partial_j^x f(\underline{x}', \underline{y}') + y'_i \partial_j^y f(\underline{x}', \underline{y}')$

Hence $\phi(E_{ij}(f)) = E_{ij}(\phi(f))$. So if $\phi(f) = f$, then $\phi(E_{ij}(f)) = E_{ij}(f)$.

(2) It's quite easy to see that E_{ij} is a differential operator, hence if it maps each generator back to the subalgebra, then it sends everything in the subalgebra to itself.

Write $\Delta_{ij} = x_i y_j - x_j y_i$, and apply E_{ik} we have

$$E_{ij}(\Delta_{jk}) = \Delta_{ik}$$
$$E_{ij}(\Delta_{kl}) = 0$$

So we're done.

(3) For any $\phi = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in SL₂, since a, b cannot be both zero. The action $x_i \mapsto ax_i + by_i$ is homogeneous and it's the same for $y_i \mapsto cx_i + dy_i$. So if f is SL₂ invariant, then each homogeneous part has to be invariant. So $K[X_{2\times n}]^{SL_2}$ admints the grading.

(4) We have to prove

$$(E_{jj}+1) \circ E_{ii} - E_{ij} \circ E_{ji} = (x_i y_j - x_j y_i) (\partial_i^x \partial_j^y - \partial_j^x \partial_i^y)$$

By using the relations that all operators are commutative except that $[\partial_i^x, x_i] = 1$ and $[\partial_i^y, y_i] = 1.$

$$(E_{jj}+1) \circ E_{ii} - E_{ij} \circ E_{ji} = (x_j\partial_j^x + y_j\partial_j^y + 1) \circ (x_i\partial_i^x + y_i\partial_i^y) - (x_i\partial_j^x + y_i\partial_j^y) \circ (x_j\partial_i^x + y_j\partial_i^y)$$

$$= x_j\partial_j^x x_i\partial_i^x + x_j\partial_j^x y_i\partial_i^y + y_j\partial_j^y x_i\partial_i^x + y_j\partial_j^y y_i\partial_i^y + x_i\partial_i^x + y_i\partial_i^y$$

$$- x_i\partial_j^x x_j\partial_i^x - x_i\partial_j^y y_j\partial_i^y - y_i\partial_j^y y_i\partial_i^x - y_i\partial_j^y y_j\partial_i^y$$

$$= x_j x_i\partial_j^x \partial_i^x + x_j y_i\partial_j^x \partial_i^x - x_i y_j\partial_j^x \partial_i^y - y_i x_j\partial_j^y \partial_i^x - y_i\partial_i^y - y_i y_j\partial_j^y \partial_i^y$$

$$= x_j y_i\partial_j^x \partial_i^y + y_j x_i\partial_j^y \partial_i^x - x_i y_j\partial_j^x \partial_i^y - y_i x_j\partial_j^y \partial_i^x$$

$$= (x_j y_i - x_i y_j)\partial_j^x \partial_i^y + (y_j x_i - y_i x_j)\partial_j^y \partial_i^x$$

$$= (x_i y_j - x_j y_i)(\partial_i^x \partial_j^y - \partial_i^x \partial_i^y)$$

(5) For notational reason write $R = K \left[\left\{ \Delta_{ij} \middle| 1 \le i < j \le n \right\} \right]$ and $S = K \left[X_{2 \times n} \right]^{\mathrm{SL}_2}$. Since both are graded rings, we only need to show that all homogeneous elements in S are in R. We first prove following lemma:

Lemma: For any nonzero homogeneous element $f \in S$, the degree of f cannot be $k \cdot \vec{e}_i$ for any natural number k. In other words, f cannot be an element in $K[x_i, y_i]$. *Proof.* Suppose $f \in K[x_i, y_i]$, then we can write

$$f = c_0 x_i^k + c_1 x_i^{k-1} y_i + \dots + c_k y_i^k$$

where $c_j \in K$. After apply $\begin{pmatrix} a & 0 \\ 0 & 1/a \end{pmatrix} \in SL_2$ to f we get
 $c_0 (ax_i)^k + c_1 (ax_i)^{k-1} (y_i/a) + \dots + c_k (y_i/a)^k = c_0 x_i^k + c_1 x_i^{k-1} y_i + \dots + c_k y_i^k$
 $\Leftrightarrow c_i = c_i a^{k-2j}$

for any nonzero $a \in K$. Since K has char 0 and hence it has infinitely many elements. We conclude that $c_j = 0$ for all j. But then f is zero.

Now we are ready to prove R = S. If a homogeneous element $f \in S$ is of degree $a_1 \overrightarrow{e}_1 + a_n \overrightarrow{e}_n$, call $a_1 + \cdots + a_n$ the total degree of f. Choose a homogeneous element $f \in S \setminus R$ with smallest possible total degree. Assume WLOG that $\deg(f) = a_1 \overrightarrow{e}_1 + \cdots + a_l \overrightarrow{e}_l$ for some $1 \leq l \leq h$ with all $a_i > 0$.

If f involves x_j or y_j , then easy calculation shows that $\deg(E_{ij}(f)) = \deg(f) + \overrightarrow{e}_i - \overrightarrow{e}_j$ if $E_{ij}(f) \neq 0$. Hence by appyling E_{1i} $(1 < i \leq l) a_i$ times consectively for each *i* we can find an element of homogeneous degree $k \overrightarrow{e}_1$, which is impossible by Lemma. So there is some intermediate step f_1 such that $f_1 \neq 0$ but $E_{1i}(f_1) = 0 \in R$. This tells us that we can find an intermediate step f_2 such that $f_2 \notin R$ but $E_{1j}(f_2) \in R$. Now apply Cappelli's operator

$$\begin{vmatrix} E_{11} + 1 & E_{j1} \\ E_{1j} & E_{jj} \end{vmatrix} = \Delta_{j1} \circ D$$

to f_2 . We have

$$(E_{11}+1)E_{jj}(f_2) - E_{j1}E_{1j}(f_2) = \Delta_{j1}(D(f_2))$$

Note that $D(f_2)$ has smaller total degree, so it must be in R, therefore RHS is in R. Since $E_{1j}(f_2) \in R$ by our choice, so is $E_{j1}E_{1j}(f_2)$. Hence we have $(E_{11}+1)E_{jj}(f_2) \in R$.

But if we write f_2 as

$$f_2 = f_h x_j^h + f_{h-1} x_j^{h-1} y_j + \dots + f_0 y_j^h$$

where f_h, f_{h-1}, \dots doesn't involve x_j or y_j . Then easy calculation shows that

$$E_{jj}(f_2) = hf_2$$

Hence the operator $(E_{11} + 1)E_{jj}$ acts as a nonzero scalar on f_2 , which implies that $f_2 \in R$, a contradiction! So there is no such $f \in S \setminus R$ for us to start. Hence R = S.

Problem 5. This problem gives a proof of the graded local duality theorem. Let $R = K[x_1, \ldots, x_d]$ be an N-graded polynomial ring, with $\deg(x_i) = a_i$. Set $-a = a_1 + \cdots + a_d$. From worksheet #2 we know that R^* is an injective hull for K, and from worksheet #3, we know that $H^d_{\mathfrak{m}}(R) \cong R^*(-a)$ as graded modules.

- (1) Show that $M^* \cong \operatorname{Hom}_R(M, \mathbb{R}^*)$ for any finitely generated graded \mathbb{R} -module M.
- (2) Show that if M is finitely generated over R, then $M^{**} \cong M$.
- (3) Verify that $\operatorname{H}^{i}_{\mathfrak{m}}(M) \cong \operatorname{Tor}^{R}_{d-i}(M, R^{*}(-a)).$
- (4) State the graded versions of the Ext-Tor dualities.
- (5) Show that if M is a finitely generated graded R-module, then both dualities hold:

$$\mathrm{H}^{i}_{\mathfrak{m}}(M) \cong \mathrm{Ext}^{d-i}_{R}(M,R)^{*}(-a) \ and \ \mathrm{H}^{i}_{\mathfrak{m}}(M)^{*} \cong \mathrm{Ext}^{d-i}_{R}(M,R)(a).$$

Solution 5 (Zhan Jiang). (1) If we forget grading, then

 $\operatorname{Hom}_{R}(M, \operatorname{Hom}_{K}(R, K)) \cong \operatorname{Hom}_{K}(M \otimes_{R} R, K) \cong \operatorname{Hom}_{K}(M, K)$

So the only thing remains to show is that this isomorphism is degree-preserving.

Let $\alpha \in M^*$ be a homogeneous element of degree i, i.e. $\alpha(M_i) \subseteq J_{i+j}$. The identification above is given by

$$\alpha \mapsto (u \mapsto \alpha_u)$$

where $\alpha_u : r \mapsto \alpha(ru)$. For any homogeneous element $u \in M$ of degree k, we want to determine the degree of the map α_u . For any homogeneous element $r \in R$ of degree $l, \alpha_u(r) = \alpha(ru) \in$ K_{k+l+i} . So $\alpha_u \in \operatorname{Hom}_K(R, K)_{k+i}$. So the map $u \mapsto \alpha_u$ is of degree *i*. So this is a degree-preserving isomorphism.

(2) There is a natural map

$$M \to \underline{\operatorname{Hom}}_{K}(\underline{\operatorname{Hom}}_{K}(M, K), K)$$
$$u \mapsto e_{u} (\phi \mapsto \phi(u))$$

We check that this preserves degree: let $u \in M$ be a homogeneous element of degree k, then we want to show that e_u is of degree k, i.e. $e_u(\operatorname{Hom}_K(M, K)_i) \subseteq K_{i+k}$. Let ϕ be a homogeneous element in $\operatorname{Hom}_K(M, K)_i$, since $u \in M_k$, we have $\phi(u) \in K_{k+i}$. Hence $e_u(\operatorname{Hom}_K(M, K)_i \subseteq K_{k+i})$. So it's of degree k.

Notice that the only nonzero part of K is K_0 , so e_u maps $\operatorname{Hom}_K(M, K)_{-k} = \operatorname{Hom}_K(M_k, K)$ to K and other degrees to zero. Hence $e_u \in \operatorname{Hom}_K(\operatorname{Hom}_K(M_k, K), K)$. So the natural map above restricts to a K-linear map $f_k: M_k \to \operatorname{Hom}_K(\operatorname{Hom}_K(M_k, K), K)$. Note that if M is finitely generated, then each M_k is a finite-dimensional K-vector space. The natural map f_k is an isomorphism. So the natural map at the beginning is an isomorphism.

- (3) The Čech complex is a graded flat resolution of $R^*(-a)$. Since both sides are obtained by tensoring with M and taking (co)homology, they are literally the same graded module.
- (4) Under the assumption above, for any finitely generated graded R-modules M and N,
 - (a) $\operatorname{Tor}_{i}^{R}(M, N)^{*} \cong \operatorname{Ext}_{R}^{i}(M, N^{*})$ (b) $\operatorname{Tor}_{i}^{R}(M, N^{*}) \cong \operatorname{Ext}_{R}^{i}(M, N)^{*}$
- (5) By duality above, we have $\operatorname{Tor}_{i}^{R}(M, R^{*}) \cong \operatorname{Ext}_{R}^{i}(M, R)^{*}$ so then $\operatorname{Tor}_{i}^{R}(M, R^{*})(-a) \cong \operatorname{Ext}_{R}^{i}(M, R)^{*}(-a)$. Since shifting degree commutes with tensor and taking (co)homology, we have $\operatorname{Tor}_{i}^{R}(M, R^{*})(-a) \cong$ $\operatorname{Tor}_{i}^{R}(M, R^{*}(-a)) \cong H_{m}^{d-i}(M)$. Combine all these we have

$$H^i_m(M) \cong \operatorname{Ext}^{d-i}_R(M,R)^*(-a)$$

Apply graded dual $(-)^*$ we have

$$H_m^i(M)^* \cong (\operatorname{Ext}_R^{d-i}(M,R)^*(-a))^* = \operatorname{Ext}_R^{d-i}(M,R)^{**}(a) \cong \operatorname{Ext}_R^{d-i}(M,R)(a)$$

Problem 6. Show that if R is a Gorenstein local ring, and M is a finitely generated R-module, then M has finite projective dimension if and only if M has finite injective dimension.

Solution 6. First we observe the following fact: if

$$0 \to L \to M \to N \to 0$$

is a short exact sequence of (not necessarily f.g.) modules, and $\operatorname{Tor}_{\geq 0}^{R}(k, -) = 0$ for two of the three modules, then likewise for the third. Similarly, if $\operatorname{Ext}_{R}^{\geq 0}(k, -) = 0$ for two of the three modules, then likewise for the third. Both of these facts follow immediately from the long exact sequence.

Let M be a f.g. module of finite projective dimension. Then M has a finite free resolution. We claim that $\operatorname{Ext}_{R}^{\gg 0}(k, M) = 0$. We induce on the projective dimension of M. Indeed, if M is free, then the injective dimension of $M \cong R^{\oplus a}$ is finite, by the Gorenstein hypothesis. Otherwise, take a SES

$$0 \to L \to F \to M \to 0$$

with F free; the projective dimension of L is smaller than that of M. By the observation above, and the induction hypothesis applied to L, the claim follows. Then, since $\operatorname{Ext}_{R}^{\gg 0}(k, M) = 0$ and M is finitely generated, the injective dimension of M is finite.

Now, let M be a f.g. module of finite injective dimension, so M has a finite injective resolution. We claim that $\operatorname{Tor}_{\gg 0}^{R}(k, M) = 0$. We induce on the injective dimension of M. To deal with the base case, it suffices to show that $\operatorname{Tor}_{>\dim(R_{\mathfrak{p}})}^{R}(k, E_{R}(R/\mathfrak{p})) = 0$ for any prime \mathfrak{p} . Since $R_{\mathfrak{p}}$ is Gorenstein, $E_{R}(R/\mathfrak{p}) \cong E_{R_{\mathfrak{p}}}(R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}) \cong \operatorname{H}_{\mathfrak{p}R_{\mathfrak{p}}}^{\dim(R_{\mathfrak{p}})}(R_{\mathfrak{p}})$, which has a resolution of length dim $(R_{\mathfrak{p}})$ by flat modules, namely, $\check{C}^{\bullet}(\underline{f}; R_{\mathfrak{p}})$ for a SOP \underline{f} of $R_{\mathfrak{p}}$. Since Tor can be computed by flat resolutions, this takes care of the base case. Otherwise, take a SES

$$0 \to M \to E_R(M) \to N \to 0;$$

the injective dimension of N is smaller than that of M. By the observation above and the inductive hypothesis, the inductive step, and hence also the claim, follows. Then, since $\operatorname{Tor}_{\gg 0}^{R}(k, M) = 0$ and M is finitely generated, the projective dimension of M is finite.