Homework \#3 volunteered solutions

Problem 1. Show that $\operatorname{cd}\left(I_{2}\left(X_{2 \times 4}\right), \mathbb{C}\left[X_{2 \times 4}\right]\right)=5$ and find a prime \mathfrak{p} with $I_{2}\left(X_{2 \times 4}\right) \subsetneq \mathfrak{p} \subset \mathbb{C}\left[X_{2 \times 4}\right]$ and $\operatorname{cd}(\mathfrak{p})=4$.

Solution 1.

Lemma 1. Let $R \subseteq S$ be an inclusion of noetherian rings that splits as R-modules, and $I \subseteq R$ be an ideal. Then $\operatorname{cd}(I, R)=\operatorname{cd}(I S, S)$
Proof. We have that $\operatorname{cd}(I, R) \geq \operatorname{cd}(I, S)=\operatorname{cd}(I S, S)$ in general. Since R is a direct summand of S, $\mathrm{H}_{I}^{i}(R)$ is a direct summand of $\mathrm{H}_{I}^{i}(S) \cong \mathrm{H}_{I S}^{i}(S)$ for all i. This gives the other inequality.

We know that $\mathbb{C}\left[X_{2 \times 4}\right]^{\operatorname{SL}_{2}(\mathbb{C})}=\mathbb{C}\left[\left\{\Delta_{i j} \mid 1 \leq i<j \leq 4\right\}\right]$ is a direct summand of $\mathbb{C}\left[X_{2 \times 4}\right]$. From this lemma, we know that $\operatorname{cd}\left(I_{2}\left(X_{2 \times 4}\right), \mathbb{C}\left[X_{2 \times 4}\right]\right)=\operatorname{cd}\left(\left(\left\{\Delta_{i j}\right\}\right), \mathbb{C}\left[\left\{\Delta_{i j}\right\}\right]\right)$, and since $\left(\left\{\Delta_{i j}\right\}\right)$ is a maximal ideal, this cohomological dimension is just the dimension of the f.g. domain $\mathbb{C}\left[\left\{\Delta_{i j}\right\}\right]$.

The dimension is at least 5 , since, after specializing $x_{11} \mapsto 1, x_{12} \mapsto 0, x_{21} \mapsto 0$, the minors become

$$
x_{22}, x_{23}, x_{24}, x_{13} x_{22}, x_{14} x_{22}, \Delta_{34}
$$

and the first five are obviously algebraically independent.
The dimension is at most 5 since the minors satisfy the relation $\Delta_{12} \Delta_{34}+\Delta_{13} \Delta_{24}+\Delta_{14} \Delta_{23}$.
Finally, note that $\mathfrak{p}=\left(x_{11}, x_{12}, x_{13}, x_{14}\right) \supsetneq I_{2}\left(X_{2 \times 4}\right)$, and $\operatorname{cd}(\mathfrak{p})=4$.
Problem 2. Show that if (R, \mathfrak{m}, k) is local of dimension d and $R_{\mathfrak{p}}$ is Cohen-Macaulay for all $\mathfrak{p} \neq \mathfrak{m}$, then $\mathrm{H}_{\mathfrak{m}}^{i}(R)$ has finite length for all $i<d$.

Solution 2.

Problem 3. Let (R, \mathfrak{m}, k) be a regular local ring, and $\mathfrak{p} \in \operatorname{Spec}(R)$ of height $h \neq 0, \operatorname{dim}(R)$. Show that $\mathrm{H}_{\mathfrak{p}}^{h}(R)$ is neither artinian nor noetherian.
Solution 3 (Eamon Quinlian). For simplicity denote $H=H_{P}^{h}(R)$. Let us first show that H is not finitely generated (i.e. noetherian). If it was then $H_{P}=H_{P R_{P}}^{h}\left(R_{P}\right)$ would be finitely generated over R_{P}. Observe that since R is regular so is R_{P}, and that since $P \neq 0 R_{P}$ has positive dimension. We thus reduce to the following claim.

Claim.- Let (S, n, L) be a regular local ring of dimension $d>0$. Then $H_{n}^{d}(S)$ is not finitely generated.
Proof of Claim: We may assume S is complete. Recall that because S is regular $H_{n}^{d}(S)=E_{S}(L)$ and hence, by completeness, $H_{n}^{d}(S)^{\vee}=S$. Since S is positive-dimensional, S is not artinian. Therefore, $H_{n}^{d}(S)=S^{\vee}$ is not finitely-generated.

We now show that H is not artinian. First observe that as $H_{P} \neq 0$ by the above considerations, $H \neq 0$. Thus we may pick some $0 \neq \alpha \in H$ and denote by N the submodule generated by α. It suffices to show that N is not artinian.

Since $\operatorname{Ass}(H)=\{P\}$ (HW2\#7), we have that $\operatorname{Ass}(N)=\{P\}$. As N is finitely-generated all elements of $m \backslash P$ are nonzerodivisors. As $P \neq m$ we may pick one such $y \in m \backslash P$. The following claim concludes the exercise.

Claim.- The chain $N \supseteq y N \supseteq y^{2} N \supseteq \cdots$ does not stabilize.
Proof of Claim: As y is a nonzerodivisor, if $y^{n} N=y^{n+1} N$ for some n then $N=y N$. As $y \in m$ this would imply $N=m N$, thus $N=0$ by Nakayama's lemma - a contradiction.
Problem 4. This problem gives a proof that the invariant ring of SL_{2} acting on $K\left[X_{2 \times n}\right]=K\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n} \\ y_{1} & y_{2} & \cdots & y_{n}\end{array}\right]$ is generated by the minors $\left\{\Delta_{i j}\right\}$ of X, if K has characteristic zero.

Define for $1 \leq i, j \leq n$ the polarization operators $E_{i j}:=x_{i} \frac{\partial}{\partial x_{j}}+y_{i} \frac{\partial}{\partial y_{j}}$.
(1) Show that each $E_{i j}$ takes SL_{2}-invariants to SL_{2}-invariants.
(2) Show that each $E_{i j}$ sends the subalgebra $K\left[\left\{\Delta_{i j} \mid 1 \leq i<j \leq n\right\}\right]$ to itself.
(3) Show that $K\left[X_{2 \times n}\right]^{\mathrm{SL}_{2}}$ admits an \mathbb{N}^{n}-grading induced by the grading $\left|x_{i}\right|=\left|y_{i}\right|=\vec{e}_{i}$ on $K\left[X_{2 \times n}\right]$.
(4) Prove Cappelli's identity:

$$
\left\|\begin{array}{cc}
E_{j j}+1 & E_{i j} \\
E_{j i} & E_{i i}
\end{array}\right\|=\left\|\begin{array}{cc}
x_{i} & x_{j} \\
y_{i} & y_{j}
\end{array}\right\| \circ\left\|\begin{array}{cc}
\frac{\partial}{\partial x_{i}} & \frac{\partial}{\partial x_{j}} \\
\frac{\partial}{\partial y_{i}} & \frac{\partial}{\partial y_{j}}
\end{array}\right\|,
$$

as differential operators on $K\left[X_{2 \times n}\right]$, where $\|\star\|$ denotes determinant.
(5) Prove that $K\left[X_{2 \times n}\right]^{\mathrm{SL}_{2}}=K\left[\left\{\Delta_{i j} \mid 1 \leq i<j \leq n\right\}\right]$.

Solution 4 (Zhan Jiang). (1) Let $f(\underline{x}, \underline{y})$ be an SL_{2}-invariant element. Then we want to show that $E_{i j}(f)$ is also SL_{2}-invariant. Let $\phi=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be an element in SL_{2} and write $x_{i}^{\prime}=a x_{i}+b y_{i}$ and $y_{i}^{\prime}=c x_{i}+d y_{i}$. We also write $\partial_{i}^{x} f:=\frac{\partial f}{\partial x_{i}}$ and $\partial_{i}^{y} f:=\frac{\partial f}{\partial y_{i}}$ for $1 \leq i \leq n$.

On one hand, we have

$$
\begin{aligned}
\phi\left(E_{i j}(f)\right) & =\phi\left(x_{i} \partial_{j}^{x} f+y_{i} \partial_{j}^{y} f\right) \\
& =x_{i}^{\prime} \partial_{j}^{x} f\left(\underline{x}^{\prime}, \underline{y^{\prime}}\right)+y_{i}^{\prime} \partial_{j}^{y} f\left(\underline{x}^{\prime}, \underline{y}^{\prime}\right)
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
E_{i j}(\phi(f)) & =x_{i} \partial_{j}^{x} \phi(f)+y_{i} \partial_{j}^{y} \phi(f) \\
& =\left(a x_{i} \partial_{j}^{x} f\left(\underline{x}^{\prime}, \underline{y}^{\prime}\right)+c x_{i} \partial_{j}^{y} f\left(\underline{x}^{\prime}, \underline{y}^{\prime}\right)\right)+\left(b y_{i} \partial_{j}^{x} f\left(\underline{x}^{\prime}, \underline{y}^{\prime}\right)+d y_{i} \partial_{j}^{y} f\left(\underline{x}^{\prime}, \underline{y}^{\prime}\right)\right) \\
& =\left(a x_{i}+b y_{i}\right) \partial_{j}^{x} f\left(\underline{x}^{\prime}, \underline{y}^{\prime}\right)+\left(c x_{i}+d y_{i}\right) \partial_{j}^{y} f\left(\underline{x}^{\prime}, \underline{y}^{\prime}\right) \\
& =x_{i}^{\prime} \partial_{j}^{x} f\left(\underline{x}^{\prime}, \underline{y}^{\prime}\right)+y_{i}^{\prime} \partial_{j}^{y} f\left(\underline{x}^{\prime}, \underline{y}^{\prime}\right)
\end{aligned}
$$

Hence $\phi\left(E_{i j}(f)\right)=E_{i j}(\phi(f))$. So if $\phi(f)=f$, then $\phi\left(E_{i j}(f)\right)=E_{i j}(f)$.
(2) It's quite easy to see that $E_{i j}$ is a differential operator, hence if it maps each generator back to the subalgebra, then it sends everything in the subalgebra to itself.

Write $\Delta_{i j}=x_{i} y_{j}-x_{j} y_{i}$, and apply $E_{i k}$ we have

$$
\begin{aligned}
E_{i j}\left(\Delta_{j k}\right) & =\Delta_{i k} \\
E_{i j}\left(\Delta_{k l}\right) & =0
\end{aligned}
$$

So we're done.
(3) For any $\phi=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in SL_{2}, since a, b cannot be both zero. The action $x_{i} \mapsto a x_{i}+b y_{i}$ is homogeneous and it's the same for $y_{i} \mapsto c x_{i}+d y_{i}$. So if f is SL_{2} invariant, then each homogeneous part has to be invariant. So $K\left[X_{2 \times n}\right]^{\mathrm{SL}_{2}}$ admints the grading.
(4) We have to prove

$$
\left(E_{j j}+1\right) \circ E_{i i}-E_{i j} \circ E_{j i}=\left(x_{i} y_{j}-x_{j} y_{i}\right)\left(\partial_{i}^{x} \partial_{j}^{y}-\partial_{j}^{x} \partial_{i}^{y}\right)
$$

By using the relations that all operators are commutative except that $\left[\partial_{i}^{x}, x_{i}\right]=1$ and $\left[\partial_{i}^{y}, y_{i}\right]=1$.

$$
\begin{aligned}
\left(E_{j j}+1\right) \circ E_{i i}-E_{i j} \circ E_{j i}= & \left(x_{j} \partial_{j}^{x}+y_{j} \partial_{j}^{y}+1\right) \circ\left(x_{i} \partial_{i}^{x}+y_{i} \partial_{i}^{y}\right)-\left(x_{i} \partial_{j}^{x}+y_{i} \partial_{j}^{y}\right) \circ\left(x_{j} \partial_{i}^{x}+y_{j} \partial_{i}^{y}\right) \\
= & x_{j} \partial_{j}^{x} x_{i} \partial_{i}^{x}+x_{j} \partial_{j}^{x} y_{i} \partial_{i}^{y}+y_{j} \partial_{j}^{y} x_{i} \partial_{i}^{x}+y_{j} \partial_{j}^{y} y_{i} \partial_{i}^{y}+x_{i} \partial_{i}^{x}+y_{i} \partial_{i}^{y} \\
& -x_{i} \partial_{j}^{x} x_{j} \partial_{i}^{x}-x_{i} \partial_{j}^{x} y_{j} \partial_{i}^{y}-y_{i} \partial_{j}^{y} x_{j} \partial_{i}^{x}-y_{i} \partial_{j}^{y} y_{j} \partial_{i}^{y} \\
= & x_{j} x_{i} \partial_{j}^{x} \partial_{i}^{x}+x_{j} y_{i} \partial_{j}^{x} \partial_{i}^{y}+y_{j} x_{i} \partial_{j}^{y} \partial_{i}^{x}+y_{j} y_{i} \partial_{j}^{y} \partial_{i}^{y}+x_{i} \partial_{i}^{x}+y_{i} \partial_{i}^{y} \\
& -x_{i} \partial_{i}^{x}-x_{i} x_{j} \partial_{j}^{x} \partial_{i}^{x}-x_{i} y_{j} \partial_{j}^{x} \partial_{i}^{y}-y_{i} x_{j} \partial_{j}^{y} \partial_{i}^{x}-y_{i} \partial_{i}^{y}-y_{i} y_{j} \partial_{j}^{y} \partial_{i}^{y} \\
= & x_{j} y_{i} \partial_{j}^{x} \partial_{i}^{y}+y_{j} x_{i} \partial_{j}^{y} \partial_{i}^{x}-x_{i} y_{j} \partial_{j}^{x} \partial_{i}^{y}-y_{i} x_{j} \partial_{j}^{y} \partial_{i}^{x} \\
= & \left(x_{j} y_{i}-x_{i} y_{j}\right) \partial_{j}^{x} \partial_{i}^{y}+\left(y_{j} x_{i}-y_{i} x_{j}\right) \partial_{j}^{y} \partial_{i}^{x} \\
= & \left(x_{i} y_{j}-x_{j} y_{i}\right)\left(\partial_{i}^{x} \partial_{j}^{y}-\partial_{j}^{x} \partial_{i}^{y}\right)
\end{aligned}
$$

(5) For notational reason write $R=K\left[\left\{\Delta_{i j} \mid 1 \leq i<j \leq n\right\}\right]$ and $S=K\left[X_{2 \times n}\right]^{\mathrm{SL}_{2}}$. Since both are graded rings, we only need to show that all homogeneous elements in S are in R. We first prove following lemma:

Lemma: For any nonzero homogeneous element $f \in S$, the degree of f cannot be $k \cdot \vec{e}_{i}$ for any natural number k. In other words, f cannot be an element in $K\left[x_{i}, y_{i}\right]$.
Proof. Suppose $f \in K\left[x_{i}, y_{i}\right]$, then we can write

$$
f=c_{0} x_{i}^{k}+c_{1} x_{i}^{k-1} y_{i}+\cdots+c_{k} y_{i}^{k}
$$

where $c_{j} \in K$. After apply $\left(\begin{array}{cc}a & 0 \\ 0 & 1 / a\end{array}\right) \in \mathrm{SL}_{2}$ to f we get

$$
\begin{aligned}
c_{0}\left(a x_{i}\right)^{k}+c_{1}\left(a x_{i}\right)^{k-1}\left(y_{i} / a\right)+\cdots+c_{k}\left(y_{i} / a\right)^{k} & =c_{0} x_{i}^{k}+c_{1} x_{i}^{k-1} y_{i}+\cdots+c_{k} y_{i}^{k} \\
\Leftrightarrow c_{j} & =c_{j} a^{k-2 j}
\end{aligned}
$$

for any nonzero $a \in K$. Since K has char 0 and hence it has infinitely many elements. We conclude that $c_{j}=0$ for all j. But then f is zero.

Now we are ready to prove $R=S$. If a homogeneous element $f \in S$ is of degree $a_{1} \vec{e}_{1}+a_{n} \vec{e}_{n}$, call $a_{1}+\cdots+a_{n}$ the total degree of f. Choose a homogeneous element $f \in S \backslash R$ with smallest possible total degree. Assume WLOG that $\operatorname{deg}(f)=a_{1} \vec{e}_{1}+\cdots+a_{l} \vec{e}_{l}$ for some $1 \leq l \leq h$ with all $a_{i}>0$.

If f involves x_{j} or y_{j}, then easy calculation shows that $\operatorname{deg}\left(E_{i j}(f)\right)=\operatorname{deg}(f)+\vec{e}_{i}-\vec{e}_{j}$ if $E_{i j}(f) \neq 0$. Hence by appyling $E_{1 i}(1<i \leq l) a_{i}$ times consectively for each i we can find an element of homogeneous degree $k \vec{e}_{1}$, which is impossible by Lemma. So there is some intermediate step f_{1} such that $f_{1} \neq 0$ but $E_{1 i}\left(f_{1}\right)=0 \in R$. This tells us that we can find an intermediate step f_{2} such that $f_{2} \notin R$ but $E_{1 j}\left(f_{2}\right) \in R$. Now apply Cappelli's operator

$$
\left|\begin{array}{cc}
E_{11}+1 & E_{j 1} \\
E_{1 j} & E_{j j}
\end{array}\right|=\Delta_{j 1} \circ D
$$

to f_{2}. We have

$$
\left(E_{11}+1\right) E_{j j}\left(f_{2}\right)-E_{j 1} E_{1 j}\left(f_{2}\right)=\Delta_{j 1}\left(D\left(f_{2}\right)\right)
$$

Note that $D\left(f_{2}\right)$ has smaller total degree, so it must be in R, therefore RHS is in R. Since $E_{1 j}\left(f_{2}\right) \in R$ by our choice, so is $E_{j 1} E_{1 j}\left(f_{2}\right)$. Hence we have $\left(E_{11}+1\right) E_{j j}\left(f_{2}\right) \in R$.

But if we write f_{2} as

$$
f_{2}=f_{h} x_{j}^{h}+f_{h-1} x_{j}^{h-1} y_{j}+\cdots+f_{0} y_{j}^{h}
$$

where f_{h}, f_{h-1}, \ldots doesn't involve x_{j} or y_{j}. Then easy calculation shows that

$$
E_{j j}\left(f_{2}\right)=h f_{2}
$$

Hence the operator $\left(E_{11}+1\right) E_{j j}$ acts as a nonzero scalar on f_{2}, which implies that $f_{2} \in R$, a contradiction! So there is no such $f \in S \backslash R$ for us to start. Hence $R=S$.

Problem 5. This problem gives a proof of the graded local duality theorem. Let $R=K\left[x_{1}, \ldots, x_{d}\right]$ be an \mathbb{N}-graded polynomial ring, with $\operatorname{deg}\left(x_{i}\right)=a_{i}$. Set $-a=a_{1}+\cdots+a_{d}$. From worksheet \#2 we know that R^{*} is an injective hull for K, and from worksheet $\# 3$, we know that $\mathrm{H}_{\mathrm{m}}^{d}(R) \cong R^{*}(-a)$ as graded modules.
(1) Show that $M^{*} \cong \operatorname{Hom}_{R}\left(M, R^{*}\right)$ for any finitely generated graded R-module M.
(2) Show that if M is finitely generated over R, then $M^{* *} \cong M$.
(3) Verify that $\mathrm{H}_{\mathfrak{m}}^{i}(M) \cong \operatorname{Tor}_{d-i}^{R}\left(M, R^{*}(-a)\right)$.
(4) State the graded versions of the Ext-Tor dualities.
(5) Show that if M is a finitely generated graded R-module, then both dualities hold:

$$
\mathrm{H}_{\mathfrak{m}}^{i}(M) \cong \operatorname{Ext}_{R}^{d-i}(M, R)^{*}(-a) \text { and } \mathrm{H}_{\mathfrak{m}}^{i}(M)^{*} \cong \operatorname{Ext}_{R}^{d-i}(M, R)(a)
$$

Solution 5 (Zhan Jiang). (1) If we forget grading, then

$$
\operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{K}(R, K)\right) \cong \operatorname{Hom}_{K}\left(M \otimes_{R} R, K\right) \cong \operatorname{Hom}_{K}(M, K)
$$

So the only thing remains to show is that this isomorphism is degree-preserving.
Let $\alpha \in M^{*}$ be a homogeneous element of degree i, i.e. $\alpha\left(M_{j}\right) \subseteq J_{i+j}$. The identification above is given by

$$
\alpha \mapsto\left(u \mapsto \alpha_{u}\right)
$$

where $\alpha_{u}: r \mapsto \alpha(r u)$. For any homogeneous element $u \in M$ of degree k, we want to determine the degree of the map α_{u}. For any homogeneous element $r \in R$ of degree $l, \alpha_{u}(r)=\alpha(r u) \in$ K_{k+l+i}. So $\alpha_{u} \in \operatorname{Hom}_{K}(R, K)_{k+i}$. So the map $u \mapsto \alpha_{u}$ is of degree i. So this is a degree-preserving isomorphism.
(2) There is a natural map

$$
\begin{aligned}
M & \rightarrow \underline{\operatorname{Hom}}_{K}\left(\underline{\operatorname{Hom}}_{K}(M, K), K\right) \\
u & \mapsto e_{u}(\phi \mapsto \phi(u))
\end{aligned}
$$

We check that this preserves degree: let $u \in M$ be a homogeneous element of degree k, then we want to show that e_{u} is of degree k, i.e. $e_{u}\left(\operatorname{Hom}_{K}(M, K)_{i}\right) \subseteq K_{i+k}$. Let ϕ be a homogeneous element in $\operatorname{Hom}_{K}(M, K)_{i}$, since $u \in M_{k}$, we have $\phi(u) \in K_{k+i}$. Hence $e_{u}\left(\operatorname{Hom}_{K}(M, K)_{i} \subseteq K_{k+i}\right.$. So it's of degree k.

Notice that the only nonzero part of K is K_{0}, so $e_{u} \operatorname{maps} \operatorname{Hom}_{K}(M, K)_{-k}=\operatorname{Hom}_{K}\left(M_{k}, K\right)$ to K and other degrees to zero. Hence $e_{u} \in \operatorname{Hom}_{K}\left(\operatorname{Hom}_{K}\left(M_{k}, K\right), K\right)$. So the natural map above restricts to a K-linear map $f_{k}: M_{k} \rightarrow \operatorname{Hom}_{K}\left(\operatorname{Hom}_{K}\left(M_{k}, K\right), K\right)$. Note that if M is finitely generated, then each M_{k} is a finite-dimensional K-vector space. The natural map f_{k} is an isomorphism. So the natural map at the beginning is an isomorphism.
(3) The Čech complex is a graded flat resolution of $R^{*}(-a)$. Since both sides are obtained by tensoring with M and taking (co)homology, they are literally the same graded module.
(4) Under the assumption above, for any finitely generated graded R-modules M and N,
(a) $\operatorname{Tor}_{i}^{R}(M, N)^{*} \cong \operatorname{Ext}_{R}^{i}\left(M, N^{*}\right)$
(b) $\operatorname{Tor}_{i}^{R}\left(M, N^{*}\right) \cong \operatorname{Ext}_{R}^{i}(M, N)^{*}$
(5) By duality above, we have $\operatorname{Tor}_{i}^{R}\left(M, R^{*}\right) \cong \operatorname{Ext}_{R}^{i}(M, R)^{*}$ so then $\operatorname{Tor}_{i}^{R}\left(M, R^{*}\right)(-a) \cong \operatorname{Ext}_{R}^{i}(M, R)^{*}(-a)$. Since shifting degree commutes with tensor and taking (co)homology, we have $\operatorname{Tor}_{i}^{R}\left(M, R^{*}\right)(-a) \cong$ $\operatorname{Tor}_{i}^{R}\left(M, R^{*}(-a)\right) \cong H_{m}^{d-i}(M)$. Combine all these we have

$$
H_{m}^{i}(M) \cong \operatorname{Ext}_{R}^{d-i}(M, R)^{*}(-a)
$$

Apply graded dual (-$)^{*}$ we have

$$
H_{m}^{i}(M)^{*} \cong\left(\operatorname{Ext}_{R}^{d-i}(M, R)^{*}(-a)\right)^{*}=\operatorname{Ext}_{R}^{d-i}(M, R)^{* *}(a) \cong \operatorname{Ext}_{R}^{d-i}(M, R)(a)
$$

Problem 6. Show that if R is a Gorenstein local ring, and M is a finitely generated R-module, then M has finite projective dimension if and only if M has finite injective dimension.

Solution 6. First we observe the following fact: if

$$
0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0
$$

is a short exact sequence of (not necessarily f.g.) modules, and $\operatorname{Tor}_{\gg 0}^{R}(k,-)=0$ for two of the three modules, then likewise for the third. Similarly, if $\operatorname{Ext}_{R}^{\gg}(k,-)=0$ for two of the three modules, then likewise for the third. Both of these facts follow immediately from the long exact sequence.

Let M be a f.g. module of finite projective dimension. Then M has a finite free resolution. We claim that $\operatorname{Ext}_{R}^{\gg}(k, M)=0$. We induce on the projective dimension of M. Indeed, if M is free, then the injective dimension of $M \cong R^{\oplus a}$ is finite, by the Gorenstein hypothesis. Otherwise, take a SES

$$
0 \rightarrow L \rightarrow F \rightarrow M \rightarrow 0
$$

with F free; the projective dimension of L is smaller than that of M. By the observation above, and the induction hypothesis applied to L, the claim follows. Then, since $\operatorname{Ext}_{R}^{>0}(k, M)=0$ and M is finitely generated, the injective dimension of M is finite.

Now, let M be a f.g. module of finite injective dimension, so M has a finite injective resolution. We claim that $\operatorname{Tor}_{\gg 0}^{R}(k, M)=0$. We induce on the injective dimension of M. To deal with the base case, it suffices to show that $\operatorname{Tor}_{>\operatorname{dim}\left(R_{\mathfrak{p}}\right)}^{R}\left(k, E_{R}(R / \mathfrak{p})\right)=0$ for any prime \mathfrak{p}. Since $R_{\mathfrak{p}}$ is Gorenstein, $E_{R}(R / \mathfrak{p}) \cong E_{R_{\mathfrak{p}}}\left(R_{\mathfrak{p}} / \mathfrak{p} R_{\mathfrak{p}}\right) \cong \mathrm{H}_{\mathfrak{p} R_{\mathfrak{p}}}^{\operatorname{dim}\left(R_{\mathfrak{p}}\right)}\left(R_{\mathfrak{p}}\right)$, which has a resolution of length $\operatorname{dim}\left(R_{\mathfrak{p}}\right)$ by flat modules, namely, $\check{C} \bullet\left(\underline{f} ; R_{\mathfrak{p}}\right)$ for a SOP \underline{f} of $R_{\mathfrak{p}}$. Since Tor can be computed by flat resolutions, this takes care of the base case. Otherwise, take a SES

$$
0 \rightarrow M \rightarrow E_{R}(M) \rightarrow N \rightarrow 0
$$

the injective dimension of N is smaller than that of M. By the observation above and the inductive hypothesis, the inductive step, and hence also the claim, follows. Then, since $\operatorname{Tor}_{\gg 0}^{R}(k, M)=0$ and M is finitely generated, the projective dimension of M is finite.

