
Homework #3 volunteered solutions

Problem 1. Show that cd(I2(X2×4),C[X2×4]) = 5 and find a prime p with I2(X2×4) ( p ⊂ C[X2×4] and
cd(p) = 4.

Solution 1.

Lemma 1. Let R ⊆ S be an inclusion of noetherian rings that splits as R-modules, and I ⊆ R be an
ideal. Then cd(I, R) = cd(IS, S)

Proof. We have that cd(I, R) ≥ cd(I, S) = cd(IS, S) in general. Since R is a direct summand of S,
Hi

I(R) is a direct summand of Hi
I(S) ∼= Hi

IS(S) for all i. This gives the other inequality. �

We know that C[X2×4]
SL2(C) = C[{∆ij | 1 ≤ i < j ≤ 4}] is a direct summand of C[X2×4]. From this

lemma, we know that cd(I2(X2×4),C[X2×4]) = cd(({∆ij}),C[{∆ij}]), and since ({∆ij}) is a maximal
ideal, this cohomological dimension is just the dimension of the f.g. domain C[{∆ij}].

The dimension is at least 5, since, after specializing x11 7→ 1, x12 7→ 0, x21 7→ 0, the minors become

x22, x23, x24, x13x22, x14x22,∆34,

and the first five are obviously algebraically independent.
The dimension is at most 5 since the minors satisfy the relation ∆12∆34 + ∆13∆24 + ∆14∆23.
Finally, note that p = (x11, x12, x13, x14) ) I2(X2×4), and cd(p) = 4.

Problem 2. Show that if (R,m, k) is local of dimension d and Rp is Cohen-Macaulay for all p 6= m,
then Hi

m(R) has finite length for all i < d.

Solution 2.

Problem 3. Let (R,m, k) be a regular local ring, and p ∈ Spec(R) of height h 6= 0, dim(R). Show that
Hh

p (R) is neither artinian nor noetherian.

Solution 3 (Eamon Quinlian). For simplicity denote H = Hh
P (R). Let us first show that H is not

finitely generated (i.e. noetherian). If it was then HP = Hh
PRP

(RP ) would be finitely generated over
RP . Observe that since R is regular so is RP , and that since P 6= 0 RP has positive dimension. We thus
reduce to the following claim.

Claim.- Let (S, n, L) be a regular local ring of dimension d > 0. Then Hd
n(S) is not finitely generated.

Proof of Claim: We may assume S is complete. Recall that because S is regular Hd
n(S) = ES(L)

and hence, by completeness, Hd
n(S)∨ = S. Since S is positive-dimensional, S is not artinian. Therefore,

Hd
n(S) = S∨ is not finitely-generated. �
We now show that H is not artinian. First observe that as HP 6= 0 by the above considerations,

H 6= 0. Thus we may pick some 0 6= α ∈ H and denote by N the submodule generated by α. It suffices
to show that N is not artinian.

Since Ass(H) = {P} (HW2 #7), we have that Ass(N) = {P}. As N is finitely-generated all elements
of m\P are nonzerodivisors. As P 6= m we may pick one such y ∈ m\P . The following claim concludes
the exercise.

Claim.- The chain N ⊇ yN ⊇ y2N ⊇ · · · does not stabilize.
Proof of Claim: As y is a nonzerodivisor, if ynN = yn+1N for some n then N = yN . As y ∈ m this

would imply N = mN , thus N = 0 by Nakayama’s lemma – a contradiction.

Problem 4. This problem gives a proof that the invariant ring of SL2 acting on K[X2×n] = K

[
x1 x2 · · · xn
y1 y2 · · · yn

]
is generated by the minors {∆ij} of X, if K has characteristic zero.

Define for 1 ≤ i, j ≤ n the polarization operators Eij := xi
∂

∂xj
+ yi

∂
∂yj

.

(1) Show that each Eij takes SL2-invariants to SL2-invariants.
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(2) Show that each Eij sends the subalgebra K[{∆ij | 1 ≤ i < j ≤ n}] to itself.
(3) Show that K[X2×n]SL2 admits an Nn-grading induced by the grading |xi| = |yi| = ~ei on K[X2×n].
(4) Prove Cappelli’s identity:

∥∥∥∥Ejj + 1 Eij

Eji Eii

∥∥∥∥ =

∥∥∥∥xi xj
yi yj

∥∥∥∥ ◦
∥∥∥∥∥ ∂
∂xi

∂
∂xj

∂
∂yi

∂
∂yj

∥∥∥∥∥ ,
as differential operators on K[X2×n], where ‖ ? ‖ denotes determinant.

(5) Prove that K[X2×n]SL2 = K[{∆ij | 1 ≤ i < j ≤ n}].

Solution 4 (Zhan Jiang). (1) Let f(x, y) be an SL2-invariant element. Then we want to show that

Eij(f) is also SL2-invariant. Let φ =

(
a b
c d

)
be an element in SL2 and write x′i = axi + byi and

y′i = cxi + dyi. We also write ∂xi f := ∂f
∂xi

and ∂yi f := ∂f
∂yi

for 1 ≤ i ≤ n.

On one hand, we have

φ(Eij(f)) = φ(xi∂
x
j f + yi∂

y
j f)

= x′i∂
x
j f(x′, y′) + y′i∂

y
j f(x′, y′)

On the other hand, we have

Eij(φ(f)) = xi∂
x
j φ(f) + yi∂

y
j φ(f)

= (axi∂
x
j f(x′, y′) + cxi∂

y
j f(x′, y′)) + (byi∂

x
j f(x′, y′) + dyi∂

y
j f(x′, y′))

= (axi + byi)∂
x
j f(x′, y′) + (cxi + dyi)∂

y
j f(x′, y′)

= x′i∂
x
j f(x′, y′) + y′i∂

y
j f(x′, y′)

Hence φ(Eij(f)) = Eij(φ(f)). So if φ(f) = f , then φ(Eij(f)) = Eij(f).
(2) It’s quite easy to see that Eij is a differential operator, hence if it maps each generator back to

the subalgebra, then it sends everything in the subalgebra to itself.
Write ∆ij = xiyj − xjyi, and apply Eik we have

Eij(∆jk) = ∆ik

Eij(∆kl) = 0

So we’re done.

(3) For any φ =

(
a b
c d

)
in SL2, since a, b cannot be both zero. The action xi 7→ axi + byi is

homogeneous and it’s the same for yi 7→ cxi+dyi. So if f is SL2 invariant, then each homogeneous
part has to be invariant. So K [X2×n]SL2 admints the grading.

(4) We have to prove

(Ejj + 1) ◦ Eii − Eij ◦ Eji = (xiyj − xjyi)(∂xi ∂
y
j − ∂xj ∂

y
i )

By using the relations that all operators are commutative except that [∂xi , xi] = 1 and
[∂yi , yi] = 1.
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(Ejj + 1) ◦ Eii − Eij ◦ Eji =(xj∂
x
j + yj∂

y
j + 1) ◦ (xi∂

x
i + yi∂

y
i )− (xi∂

x
j + yi∂

y
j ) ◦ (xj∂

x
i + yj∂

y
i )

=xj∂
x
j xi∂

x
i + xj∂

x
j yi∂

y
i + yj∂

y
j xi∂

x
i + yj∂

y
j yi∂

y
i + xi∂

x
i + yi∂

y
i

− xi∂xj xj∂xi − xi∂xj yj∂
y
i − yi∂

y
j xj∂

x
i − yi∂

y
j yj∂

y
i

=xjxi∂
x
j ∂

x
i + xjyi∂

x
j ∂

y
i + yjxi∂

y
j ∂

x
i + yjyi∂

y
j ∂

y
i + xi∂

x
i + yi∂

y
i

− xi∂xi − xixj∂xj ∂xi − xiyj∂xj ∂
y
i − yixj∂

y
j ∂

x
i − yi∂

y
i − yiyj∂

y
j ∂

y
i

=xjyi∂
x
j ∂

y
i + yjxi∂

y
j ∂

x
i − xiyj∂xj ∂

y
i − yixj∂

y
j ∂

x
i

=(xjyi − xiyj)∂xj ∂
y
i + (yjxi − yixj)∂yj ∂xi

=(xiyj − xjyi)(∂xi ∂
y
j − ∂xj ∂

y
i )

(5) For notational reason write R = K
[{

∆ij

∣∣1 ≤ i < j ≤ n
}]

and S = K [X2×n]SL2 . Since both are
graded rings, we only need to show that all homogeneous elements in S are in R. We first prove
following lemma:

Lemma: For any nonzero homogeneous element f ∈ S, the degree of f cannot be k · −→e i for
any natural number k. In other words, f cannot be an element in K[xi, yi].

Proof. Suppose f ∈ K [xi, yi], then we can write

f = c0x
k
i + c1x

k−1
i yi + · · ·+ cky

k
i

where cj ∈ K. After apply

(
a 0
0 1/a

)
∈ SL2 to f we get

c0(axi)
k + c1(axi)

k−1(yi/a) + · · ·+ ck(yi/a)k =c0x
k
i + c1x

k−1
i yi + · · ·+ cky

k
i

⇔ cj =cja
k−2j

for any nonzero a ∈ K. Since K has char 0 and hence it has infinitely many elements. We
conclude that cj = 0 for all j. But then f is zero. �

Now we are ready to prove R = S. If a homogeneous element f ∈ S is of degree a1
−→e 1 +an

−→e n,
call a1 + · · ·+ an the total degree of f . Choose a homogeneous element f ∈ S \R with smallest
possible total degree. Assume WLOG that deg(f) = a1

−→e 1 + · · ·+ al
−→e l for some 1 ≤ l ≤ h with

all ai > 0.
If f involves xj or yj, then easy calculation shows that deg(Eij(f)) = deg(f) + −→e i − −→e j

if Eij(f) 6= 0. Hence by appyling E1i (1 < i ≤ l) ai times consectively for each i we can
find an element of homogeneous degree k−→e 1, which is impossible by Lemma. So there is some
intermediate step f1 such that f1 6= 0 but E1i(f1) = 0 ∈ R. This tells us that we can find an
intermediate step f2 such that f2 6∈ R but E1j(f2) ∈ R. Now apply Cappelli’s operator∣∣∣∣E11 + 1 Ej1

E1j Ejj

∣∣∣∣ = ∆j1 ◦D

to f2. We have
(E11 + 1)Ejj(f2)− Ej1E1j(f2) = ∆j1(D(f2))

Note that D(f2) has smaller total degree, so it must be in R, therefore RHS is in R. Since
E1j(f2) ∈ R by our choice, so is Ej1E1j(f2). Hence we have (E11 + 1)Ejj(f2) ∈ R.

But if we write f2 as

f2 = fhx
h
j + fh−1x

h−1
j yj + · · ·+ f0y

h
j

where fh, fh−1, ... doesn’t involve xj or yj. Then easy calculation shows that

Ejj(f2) = hf2

Hence the operator (E11 + 1)Ejj acts as a nonzero scalar on f2, which implies that f2 ∈ R, a
contradiction! So there is no such f ∈ S \R for us to start. Hence R = S.
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Problem 5. This problem gives a proof of the graded local duality theorem. Let R = K[x1, . . . , xd] be
an N-graded polynomial ring, with deg(xi) = ai. Set −a = a1 + · · · + ad. From worksheet #2 we know
that R∗ is an injective hull for K, and from worksheet #3, we know that Hd

m(R) ∼= R∗(−a) as graded
modules.

(1) Show that M∗ ∼= HomR(M,R∗) for any finitely generated graded R-module M .
(2) Show that if M is finitely generated over R, then M∗∗ ∼= M .
(3) Verify that Hi

m(M) ∼= TorRd−i(M,R∗(−a)).
(4) State the graded versions of the Ext–Tor dualities.
(5) Show that if M is a finitely generated graded R-module, then both dualities hold:

Hi
m(M) ∼= Extd−iR (M,R)∗(−a) and Hi

m(M)∗ ∼= Extd−iR (M,R)(a).

Solution 5 (Zhan Jiang). (1) If we forget grading, then

HomR(M,HomK(R,K)) ∼= HomK(M ⊗R R,K) ∼= HomK(M,K)

So the only thing remains to show is that this isomorphism is degree-preserving.
Let α ∈ M∗ be a homogeneous element of degree i, i.e. α(Mj) ⊆ Ji+j. The identification

above is given by

α 7→ (u 7→ αu)

where αu : r 7→ α(ru). For any homogeneous element u ∈ M of degree k, we want to determine
the degree of the map αu. For any homogeneous element r ∈ R of degree l, αu(r) = α(ru) ∈
Kk+l+i. So αu ∈ HomK(R,K)k+i. So the map u 7→ αu is of degree i. So this is a degree-preserving
isomorphism.

(2) There is a natural map

M → HomK(HomK(M,K), K)

u 7→ eu (φ 7→ φ(u))

We check that this preserves degree: let u ∈ M be a homogeneous element of degree k, then
we want to show that eu is of degree k, i.e. eu(HomK(M,K)i) ⊆ Ki+k. Let φ be a homogeneous
element in HomK(M,K)i, since u ∈Mk, we have φ(u) ∈ Kk+i. Hence eu(HomK(M,K)i ⊆ Kk+i.
So it’s of degree k.

Notice that the only nonzero part of K is K0, so eu maps HomK(M,K)−k = HomK(Mk, K)
to K and other degrees to zero. Hence eu ∈ HomK(HomK(Mk, K), K). So the natural map
above restricts to a K-linear map fk : Mk → HomK(HomK(Mk, K), K). Note that if M is
finitely generated, then each Mk is a finite-dimensional K-vector space. The natural map fk is
an isomorphism. So the natural map at the beginning is an isomorphism.

(3) The Čech complex is a graded flat resolution of R∗(−a). Since both sides are obtained by
tensoring with M and taking (co)homology, they are literally the same graded module.

(4) Under the assumption above, for any finitely generated graded R-modules M and N ,
(a) TorRi (M,N)∗ ∼= ExtiR(M,N∗)
(b) TorRi (M,N∗) ∼= ExtiR(M,N)∗

(5) By duality above, we have TorRi (M,R∗) ∼= ExtiR(M,R)∗ so then TorRi (M,R∗)(−a) ∼= ExtiR(M,R)∗(−a).
Since shifting degree commutes with tensor and taking (co)homology, we have TorRi (M,R∗)(−a) ∼=
TorRi (M,R∗(−a)) ∼= Hd−i

m (M). Combine all these we have

H i
m(M) ∼= Extd−iR (M,R)∗(−a)

Apply graded dual (−)∗ we have

H i
m(M)∗ ∼= (Extd−iR (M,R)∗(−a))∗ = Extd−iR (M,R)∗∗(a) ∼= Extd−iR (M,R)(a)

Problem 6. Show that if R is a Gorenstein local ring, and M is a finitely generated R-module, then M
has finite projective dimension if and only if M has finite injective dimension.
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Solution 6. First we observe the following fact: if

0→ L→M → N → 0

is a short exact sequence of (not necessarily f.g.) modules, and TorR�0(k,−) = 0 for two of the three
modules, then likewise for the third. Similarly, if Ext�0

R (k,−) = 0 for two of the three modules, then
likewise for the third. Both of these facts follow immediately from the long exact sequence.

Let M be a f.g. module of finite projective dimension. Then M has a finite free resolution. We claim
that Ext�0

R (k,M) = 0. We induce on the projective dimension of M . Indeed, if M is free, then the
injective dimension of M ∼= R⊕a is finite, by the Gorenstein hypothesis. Otherwise, take a SES

0→ L→ F →M → 0

with F free; the projective dimension of L is smaller than that of M . By the observation above, and the
induction hypothesis applied to L, the claim follows. Then, since Ext�0

R (k,M) = 0 and M is finitely
generated, the injective dimension of M is finite.

Now, let M be a f.g. module of finite injective dimension, so M has a finite injective resolution.
We claim that TorR�0(k,M) = 0. We induce on the injective dimension of M . To deal with the base
case, it suffices to show that TorR>dim(Rp)(k,ER(R/p)) = 0 for any prime p. Since Rp is Gorenstein,

ER(R/p) ∼= ERp(Rp/pRp) ∼= H
dim(Rp)
pRp

(Rp), which has a resolution of length dim(Rp) by flat modules,

namely, Č•(f ;Rp) for a SOP f of Rp. Since Tor can be computed by flat resolutions, this takes care of
the base case. Otherwise, take a SES

0→M → ER(M)→ N → 0;

the injective dimension of N is smaller than that of M . By the observation above and the inductive
hypothesis, the inductive step, and hence also the claim, follows. Then, since TorR�0(k,M) = 0 and M
is finitely generated, the projective dimension of M is finite.


