
Math 614, Fall 2018, Homework #1 Comments
• For problem #2, we can’t assume that if an element in a domain is not irreducible, then it is

divisible by an irreducible element.
Here is a counterexample: let R =

⋃
n∈N CJx1/nK. You can check that every element of R can

be written as a product r = xm/nu for some m/n ∈ Q and u a unit; this follows pretty easily from
the analogous statement in CJxK. From this decomposition, we find that there are no irreducible
elements in R at all! Indeed, if r as above is not a unit, then we can write r = (xm/2nu)(xm/2n),
so any nonunit is a product of two other nonunits.

For the sake of the problem, the arguments that used this claim could be reworded to just use
the fact that an element that is not irreducible is a product of two nonunits, and follow the same
strategy. Alternatively, you could use the hypothesis to show first that every nonunit is divisible
by an irreducible.
• Note that the first statement of #2 also applies for nonNoetherian rings, so we don’t want to

assume Noetherian for it. For example, every element in K[x1, x2, x3, . . . ] admits a factorization
into irreducibles. Think about this ring has ACC for principal ideals.
• Let A ⊆ R be rings. The condition that a map π : R → A is A-linear is very different from the

condition that π : R→ A is a ring homomorphism. In checking problem #3 and #4a, these got
mixed up sometimes.
A-linear says π(ar) = aπ(r) for a ∈ A, r ∈ R, and π(

∑
airi) =

∑
aiπ(ri) for ai ∈ A, ri ∈ R

(and additive).
Ring homomorphism says π(ar) = π(a)π(r) for a ∈ A, r ∈ R, and π(

∑
airi) =

∑
π(ai)π(ri)

for ai ∈ A, ri ∈ R (and additive).
Here is an example to distinguish these: let A = K[x2] ⊆ R = K[x], and π : R → A be the

map that sends a polynomial to the sum of its even degree pieces. This is A-linear: if f ∈ A and
r ∈ R, then π(ar) is the sum of even degree parts of ar, which is a times the sum of even degree
parts of r, which is aπ(r). However, this is not a ring homomorphism: the even degree parts of
a product of two polynomials is not the product of their even degree parts (try x and x).
• To be a direct summand means A ⊆ R and there is some π : R → A that is A-linear such that
π|A = 1A. It is important to check that a supposed splitting is A-linear. Let’s see what happens
if we mess with this condition:

If A ⊆ R, then there is always a function π : R → A such that π|A = 1A, so just finding a
function means nothing.

If A ⊆ R, it is much more restrictive to ask for an ring map π : R → A such that π|A = 1A.
This cannot happen for A = K[x2] ⊆ R = K[x], for example; we would have x2 7→ x2, so a
homomorphism would require x 7→ some element whose square is x2, but no such element lives
in A.

Here is a nonexample of being a direct summand: A = K[x2, x3] ⊆ R = K[x]. If A were a
direct summand of R, we would have R = A⊕C as A-modules. Since this decomposition respects
the A-module structure, it respects the K-vector space structure by restriction of scalars as well,
because K ⊆ A. Thus, C = K · x is a one-dimensional vector space. But, C is a submodule of
R, so it is a torsion free A-module; this is a contradiction.
• Also, when we assert that A ⊆ R is a direct summand, we consider the inclusion map to be fixed.
• For #4b, some of us gave basically the same proof for finite generation using Artin-Tate as in

class. What I had in mind was the following: RG is Noetherian (by #4a), and N-graded with
[RG]0 = K, so RG is finitely generated as an algebra over K by a theorem from class on graded
rings.

The point of having this other argument is that we can apply it to other rings of invariants:
if G acts by degree-preserving K-algebra maps, and RG is a direct summand (which can be true
for some infinite groups), then RG is finitely generated as a K-algebra.
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