
Math 614, Fall 2018, Homework #1

Please write up and turn in at least five of the following problems at the beginning of class Thursday,
September 20. You are strongly encouraged to work out the rest of them, as well.

(1) (a) Let R = C[x] and S = C[x, y]/(xy). Check that R ⊆ S, and find a generating set for S as
an R-module.

(b) With S as above, find an element f ∈ S such that S is a finitely generated A = C[f ]-module.
Can you give an explicit description of the A-module structure of S?

(2) Show that, in a domain R, if every ascending chain of principal ideals stabilizes, then every
element factors as a product of irreducibles. Hence, in a Noetherian ring, such factorizations
exist.

(3) Let i : R→ S be a ring homomorphism. We say that R is a direct summand of S if there is an
R-module homomorphism π : S → R such that π ◦ i is the identity on R. Note that this implies
that i is injective; we identify i(R) with R ⊆ S. Let R be a direct summand of S.
(a) Show that, if I is an ideal of R, that IS ∩R = I, where IS =

∑
j ajsj : aj ∈ I, sj ∈ S is the

ideal generated by I in S.
(b) Show that if S is Noetherian, then R is Noetherian as well.

(4) Let G be a finite group and R be a polynomial ring over K.1 Suppose that G acts on R by
degree preserving automorphisms, and that the integer |G| is a unit in K.2

(a) Show that RG is a direct summand of R.
(b) Use this to give another proof in this setting that RG is finitely generated over K.

It turns out that for many important infinite groups G in characteristic zero (including G =
(K×)n,GLn(K), SLn(K), etc.), RG is a direct summand of R for every representation of G,
and hence RG is finitely generated over K. This is the general idea of Hilbert’s proof of finite
generation of invariants over SLn(K).

(5) The ring of complex analytic germs in d variables, denoted C{z1, . . . , zd}, is the subring of
CJz1, . . . , zdK consisting of power series that converge on some ball containing the origin.
• A Weierstrass polynomial of degree t in zd is a function of the form ztd + ft−1z

t−1
d + · · ·+ f0

with f0, . . . , ft−1 ∈ C{z1, . . . , zd−1}.
• The Weierstrass preparation theorem says that: If f ∈ C{z1, . . . , zd} satisfies f(0, . . . , 0) = 0,

and f(0, . . . , 0, zd) 6≡ 0, then there is some unit g ∈ C{z1, . . . , zd} and Weierstrass polynomial
h in zd such that f = gh.
• The Weierstrass division theorem says that if h is a Weierstrass polynomial of degree t

in zd, and f ∈ C{z1, . . . , zd}, then f = ph + q for some p ∈ C{z1, . . . , zd}, and q ∈
C{z1, . . . , zd−1}[zd] of degree less than t in zd.

Use the Weierstrass preparation theorem and Weierstrass division theorem to show that C{z1, . . . , zd}
is Noetherian.34

1Mentioned in class: K is a field and R has finitely many variables here.
2This happens whenever K has characteristic zero, for example.
3Hint: Induce on d. Show that any nonzero f satisfies the hypothesis of WPT after a linear change of coordinates, and

show that any C{z1, . . . , zd}/(f) is Noetherian.
4A similar proof holds for polynomial and power series rings over fields. We will soon encounter the polynomial analogue

of WPT.
1



2

(6) (a) Show that if R is a domain, and G is a finite group acting on R, then G acts on the fraction
field frac(R) of R, and frac(RG) = frac(R)G.

(b) We never concluded that we found all of the invariants in our group of order 8 example.
Show that we at least found them on the level of fraction fields; i.e., frac(RG) = C(x2y2, x4+
y4, xy(x4 − y4)).

(7) Commutative algebra and invariant theory have been very useful in the study of nonnegative
solutions to integer linear equations (linear diophantine equations). Here is a toy application to
indicate this. Let A ∈ Matn×m(Z), and K be a field.

(a) Show that the ring R =
⊕

α∈Nn∩ker(AT )

K · xα is a direct summand of the polynomial ring

S = K[x1, . . . , xn].
(b) Show that, if K is infinite, that R = SG, where G = (K×)m acts on S by λ · xi =

λai11 · · ·λaimm xi.
(c) Use part (a) to show that ker(AT ) ∩ Nn is a finitely generated semigroup.

(8) Show that if d ∈ N>1, then the ring

{r ∈ Q(
√
d) | r is integral over Z} =

{
Z + Z1+

√
d

2
if d ≡ 1 mod 4

Z + Z
√
d if d 6≡ 1 mod 4.

(9) Let K be a field, and R be a Noetherian N-graded ring with R0 = K. Show that, for some
d ∈ N, the subring R(d) :=

⊕
i∈NRdi ⊆ R is generated by elements of degree d.

(10) This problem gives a proof that the invariant ring of SL2 acting on C[X2×n] = C
[
x1 x2 · · · xn
y1 y2 · · · yn

]
is generated by the 2× 2 minors {∆ij; = det

[
xi xj
y1 yj

]
| i < j} of X, if C has characteristic zero.

Define for 1 ≤ i, j ≤ n the polarization operators Eij := xi
∂
∂xj

+ yi
∂
∂yj

.

(a) Show that each Eij takes SL2-invariants to SL2-invariants.
(b) Show that each Eij sends the subalgebra C[{∆ij | 1 ≤ i < j ≤ n}] to itself.
(c) Show that C[X2×n]SL2 admits an Nn-grading induced by the grading |xi| = |yi| = ~ei on

C[X2×n].
(d) Prove Cappelli’s identity:∥∥∥∥Ejj + 1 Eij

Eji Eii

∥∥∥∥ =

∥∥∥∥xi xj
yi yj

∥∥∥∥ ◦
∥∥∥∥∥ ∂
∂xi

∂
∂xj

∂
∂yi

∂
∂yj

∥∥∥∥∥ ,
as differential operators on K[X2×n], where ‖ ? ‖ denotes determinant.5

(e) Prove that C[X2×n]SL2 = C[{∆ij | 1 ≤ i < j ≤ n}].

5Here,

∥∥∥∥xi xj

yi yj

∥∥∥∥ is to be interpreted as the operator “multiplication by

∥∥∥∥xi xj

yi yj

∥∥∥∥.”


