Math 614, Fall 2018, Homework #1

Please write up and turn in at least *five* of the following problems at the beginning of class Thursday, September 20. You are strongly encouraged to work out the rest of them, as well.

- (1) (a) Let $R = \mathbb{C}[x]$ and $S = \mathbb{C}[x, y]/(xy)$. Check that $R \subseteq S$, and find a generating set for S as an *R*-module.
 - (b) With S as above, find an element $f \in S$ such that S is a finitely generated $A = \mathbb{C}[f]$ -module. Can you give an explicit description of the A-module structure of S?
- (2) Show that, in a domain R, if every ascending chain of *principal ideals* stabilizes, then every element factors as a product of irreducibles. Hence, in a Noetherian ring, such factorizations exist.
- (3) Let $i: R \to S$ be a ring homomorphism. We say that R is a *direct summand* of S if there is an R-module homomorphism $\pi: S \to R$ such that $\pi \circ i$ is the identity on R. Note that this implies that i is injective; we identify i(R) with $R \subseteq S$. Let R be a direct summand of S.
 - (a) Show that, if I is an ideal of R, that $IS \cap R = I$, where $IS = \sum_j a_j s_j : a_j \in I, s_j \in S$ is the ideal generated by I in S.
 - (b) Show that if S is Noetherian, then R is Noetherian as well.
- (4) Let G be a finite group and R be a polynomial ring over K^{1} . Suppose that G acts on R by degree preserving automorphisms, and that the integer |G| is a unit in K^{2} .
 - (a) Show that R^G is a direct summand of R.
 - (b) Use this to give another proof in this setting that R^G is finitely generated over K.

It turns out that for many important infinite groups G in characteristic zero (including $G = (K^{\times})^n$, $\operatorname{GL}_n(K)$, $\operatorname{SL}_n(K)$, etc.), R^G is a direct summand of R for every representation of G, and hence R^G is finitely generated over K. This is the general idea of Hilbert's proof of finite generation of invariants over $\operatorname{SL}_n(K)$.

- (5) The ring of complex analytic germs in d variables, denoted $\mathbb{C}\{z_1, \ldots, z_d\}$, is the subring of $\mathbb{C}[\![z_1, \ldots, z_d]\!]$ consisting of power series that converge on some ball containing the origin.
 - A Weierstrass polynomial of degree t in z_d is a function of the form $z_d^t + f_{t-1}z_d^{t-1} + \cdots + f_0$ with $f_0, \ldots, f_{t-1} \in \mathbb{C}\{z_1, \ldots, z_{d-1}\}.$
 - The Weierstrass preparation theorem says that: If $f \in \mathbb{C}\{z_1, \ldots, z_d\}$ satisfies $f(0, \ldots, 0) = 0$, and $f(0, \ldots, 0, z_d) \neq 0$, then there is some unit $g \in \mathbb{C}\{z_1, \ldots, z_d\}$ and Weierstrass polynomial h in z_d such that f = gh.
 - The Weierstrass division theorem says that if h is a Weierstrass polynomial of degree t in z_d , and $f \in \mathbb{C}\{z_1, \ldots, z_d\}$, then f = ph + q for some $p \in \mathbb{C}\{z_1, \ldots, z_d\}$, and $q \in \mathbb{C}\{z_1, \ldots, z_{d-1}\}[z_d]$ of degree less than t in z_d .

Use the Weierstrass preparation theorem and Weierstrass division theorem to show that $\mathbb{C}\{z_1, \ldots, z_d\}$ is Noetherian.³⁴

¹Mentioned in class: K is a field and R has finitely many variables here.

²This happens whenever K has characteristic zero, for example.

³Hint: Induce on d. Show that any nonzero f satisfies the hypothesis of WPT after a linear change of coordinates, and show that any $\mathbb{C}\{z_1,\ldots,z_d\}/(f)$ is Noetherian.

⁴A similar proof holds for polynomial and power series rings over fields. We will soon encounter the polynomial analogue of WPT.

- (6) (a) Show that if R is a domain, and G is a finite group acting on R, then G acts on the fraction field frac(R) of R, and frac(R^G) = frac(R)^G.
 - (b) We never concluded that we found all of the invariants in our group of order 8 example. Show that we at least found them on the level of fraction fields; i.e., $\operatorname{frac}(R^G) = \mathbb{C}(x^2y^2, x^4 +$ $y^4, xy(x^4 - y^4)).$
- (7) Commutative algebra and invariant theory have been very useful in the study of nonnegative solutions to integer linear equations (*linear diophantine equations*). Here is a toy application to indicate this. Let $A \in \operatorname{Mat}_{n \times m}(\mathbb{Z})$, and K be a field.
 - (a) Show that the ring $R = \bigoplus_{\alpha \in \mathbb{N}^n \cap \ker(A^T)} K \cdot \underline{x}^{\alpha}$ is a direct summand of the polynomial ring

 $S = K[x_1, \ldots, x_n].$

- (b) Show that, if K is infinite, that $R = S^G$, where $G = (K^{\times})^m$ acts on S by $\underline{\lambda} \cdot x_i =$ $\lambda_1^{a_{i1}} \cdots \lambda_m^{a_{im}} x_i.$
- (c) Use part (a) to show that $\ker(A^T) \cap \mathbb{N}^n$ is a finitely generated semigroup.
- (8) Show that if $d \in \mathbb{N}_{>1}$, then the ring

$$\{r \in \mathbb{Q}(\sqrt{d}) \mid r \text{ is integral over } \mathbb{Z}\} = \begin{cases} \mathbb{Z} + \mathbb{Z}\frac{1+\sqrt{d}}{2} & \text{if } d \equiv 1 \mod 4\\ \mathbb{Z} + \mathbb{Z}\sqrt{d} & \text{if } d \not\equiv 1 \mod 4. \end{cases}$$

(9) Let K be a field, and R be a Noetherian N-graded ring with $R_0 = K$. Show that, for some $d \in \mathbb{N}$, the subring $R^{(d)} := \bigoplus_{i \in \mathbb{N}} R_{di} \subseteq R$ is generated by elements of degree d.

(10) This problem gives a proof that the invariant ring of SL_2 acting on $\mathbb{C}[X_{2\times n}] = \mathbb{C}\begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ y_1 & y_2 & \cdots & y_n \end{bmatrix}$

is generated by the 2 × 2 minors $\{\Delta_{ij} := \det \begin{bmatrix} x_i & x_j \\ y_1 & y_j \end{bmatrix} \mid i < j\}$ of X, if \mathbb{C} has characteristic zero. Define for $1 \leq i, j \leq n$ the polarization operators $E_{ij} := x_i \frac{\partial}{\partial x_i} + y_i \frac{\partial}{\partial y_i}$.

- (a) Show that each E_{ij} takes SL₂-invariants to SL₂-invariants.
- (b) Show that each E_{ij} sends the subalgebra $\mathbb{C}[\{\Delta_{ij} \mid 1 \leq i < j \leq n\}]$ to itself.
- (c) Show that $\mathbb{C}[X_{2\times n}]^{\mathrm{SL}_2}$ admits an \mathbb{N}^n -grading induced by the grading $|x_i| = |y_i| = \vec{e_i}$ on $\mathbb{C}|X_{2\times n}|.$
- (d) Prove Cappelli's identity:

$$\begin{vmatrix} E_{jj} + 1 & E_{ij} \\ E_{ji} & E_{ii} \end{vmatrix} = \begin{vmatrix} x_i & x_j \\ y_i & y_j \end{vmatrix} \circ \begin{vmatrix} \frac{\partial}{\partial x_i} & \frac{\partial}{\partial x_j} \\ \frac{\partial}{\partial y_i} & \frac{\partial}{\partial y_j} \end{vmatrix}$$

as differential operators on $K[X_{2\times n}]$, where $\|\star\|$ denotes determinant.⁵ (e) Prove that $\mathbb{C}[X_{2\times n}]^{\mathrm{SL}_2} = \mathbb{C}[\{\Delta_{ij} \mid 1 \leq i < j \leq n\}].$