Math 614, Fall 2018, Homework \#5

Please write up and turn in at least four of the following problems at the beginning of class Thursday, November 29. You are strongly encouraged to work out the rest of them, as well.
(1) Let R be a Noetherian ring, and I be an ideal. Consider a collection of minimal primary decompositions of I :

$$
I=\mathfrak{q}_{1, \alpha} \cap \cdots \cap \mathfrak{q}_{s, \alpha}, \quad \alpha \in \Lambda
$$

where, for each $\alpha, \sqrt{\mathfrak{q}_{i, \alpha}}=\mathfrak{p}_{i}$.
(a) Suppose that \mathfrak{p}_{j} is not contained in any other associated prime of I, and let $W=$ $R \backslash \bigcup_{i \neq j} \mathfrak{p}_{i}$. Find some minimal primary decompositions of $I\left(W^{-1} R\right) \cap R$.
(b) Show (by induction on s) that if we we take components $\mathfrak{q}_{1, \alpha_{1}}, \ldots, \mathfrak{q}_{s, \alpha_{s}}$ from different primary decompositions of I, that we can put them together to get a primary decomposition of I; namely $I=\mathfrak{q}_{1, \alpha_{1}} \cap \cdots \cap \mathfrak{q}_{s, \alpha_{s}}$.
(2) Let K be a field, and R be a finitely generated graded K-algebra, with $R_{0}=K$.
(a) Show that if M is a graded R-module such that $[M]_{<0}=0$, then $M=\left(R_{+}\right) M$ only if $M=0$.
(b) Show that if M is a graded R-module such that $[M]_{<0}=0$, and $m_{1}, \ldots, m_{t} \in M$ are homogeneous elements such that $M /\left(R_{+}\right) M$ is generated by $\overline{m_{1}}, \ldots, \overline{m_{t}}$ as a $R /\left(R_{+}\right)$-vector space, then M is generated by $m_{1}, \ldots, m_{t} .{ }^{1}$
(c) Show that homogeneous elements $x_{1}, \ldots, x_{n} \in R$ form a homogenous system of parameters for R if and only if $K\left[x_{1}, \ldots, x_{n}\right] \subseteq R$ is a homogeneous Noether normalization for $R .^{2}$
(3) Show that if R is a normal domain of characteristic zero that contains a field, and $R \subseteq S$ is module-finite, then R is a direct summand of S.
(4) Show that if R is a domain of characteristic zero that contains a field, then R is a direct summand of every module-finite extension S only if R is normal.
(5) Recall from class that if $\phi: R \subseteq S$ is an inclusion of domains that is algebra-finite, then $\operatorname{im}\left(\phi^{*}\right)$ contains a nonempty open subset of $\operatorname{Spec}(R)$. Show that the hypothesis that the map is algebra-finite is necessary.
(6) Consider a system of polynomial equations and inequations in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$:

$$
(\boldsymbol{\ell}) \quad f_{1}(\underline{x})=\cdots=f_{a}(\underline{x})=0, \quad g_{1}(\underline{x}) \neq 0, \ldots, g_{b}(\underline{x}) \neq 0 .
$$

Let $A=\mathbb{Z}\left[\right.$ all coefficients of $\left.f_{1}, \ldots, f_{a}, g_{1}, \ldots, g_{b}\right] \subseteq \mathbb{C}$; tautologically, we can interpret
(\&) as a system of polynomial equations and inequations with coefficients in A.
(a) Show that (0) has a solution over \mathbb{C} if and only if there is a nonempty open subset $U \in \operatorname{Spec}(A)$ such that (\boldsymbol{p}) has a solution in the finite field A / \mathfrak{m} for each maximal ideal $\mathfrak{m} \in U$.

[^0](b) Show that ($\boldsymbol{\propto}$) has no solution over \mathbb{C} if and only if there is a nonempty open subset $U \in \operatorname{Spec}(A)$ such that ($\mathbf{\&}$) has no solution in the finite field A / \mathfrak{m} for each maximal ideal $\mathfrak{m} \in U$.
(7) In the same setting as \#4, suppose that all of the coefficients of the f 's and g 's are algebraic over \mathbb{Q}. In this case, show that the following are equivalent:

- (\&) has a solution over \mathbb{C}
- (\&) has a solution over $\overline{\mathbb{F}_{p}}$ for all but finitely many p
- (\&) has a solution over $\overline{\mathbb{F}_{p}}$ for infinitely many p.
(8) Problems \#3 and \#6 from Normalization worksheet

[^0]: ${ }^{1}$ Note that we are not assuming that M is finitely generated, so this is a version of NAK that allows us to actually prove that M is finitely generated!
 ${ }^{2}$ Hint: Apply the previous statement to the graded ring $K\left[x_{1}, \ldots, x_{n}\right]$.

