Name: Solutions

Problem 1 (4 points). Circle all the true statements, no justification necessary.
even!
(a) $S_{3} \cong D_{3}$.
(d) (123) is an odd permutation. $(123)=(13)(12)$
(b) S_{4} has 8 elements. It has $4!=24$
(e) \mathbb{Z}_{7}^{\times}is a cyclic group. \mathbb{Z}_{7} is a finte fold!
(c) S_{5} is an abelian group. No!
(f) If G and H are groups of order $4, G \cong H . \mathbb{Z}_{2} \times \mathbb{Z}_{2} \nVdash \mathbb{Z}_{4}$

Problem 2 (3 points). Let $f: G \longrightarrow H$ be an injective group homomorphism. Show that for every $g \in G,|f(g)|=|g|$.
For all $n \in \mathbb{Z}, \quad f\left(g^{n}\right)=f(g)^{n}$
f ingecture
Moreover, $f(g)^{n}=e \Leftrightarrow f\left(g^{n}\right)=e \Leftrightarrow g^{n}=e$
$|g|=$ smallest posture integer n st $g^{n}=e \quad\left(\infty\right.$ if $g^{n} \neq e$ for all $\left.n \geqslant 1\right)$
$=$ smallest positive integer n st $f(g)^{n}=e\left(\infty\right.$ if $f(g)^{n} \neq e$ for all $n \geqslant 1$

$$
=|f(g)|
$$

Problem 3 (3 points). True or false: the function $\mathbb{Z}_{9} \xrightarrow{f} \mathbb{Z}_{9}$ given by $x \mapsto 2 x$ is a group isomorphism.

True. Proof

1) f is a group homomophusm: for all $x, y \in \mathbb{Z}_{q}$,

$$
f(x+y)=2(x+y)=2 x+2 y=f(x)+f(y)
$$

2) $g: \mathbb{Z}_{a} \rightarrow \mathbb{Z}_{a}$ given by $g(x)=5 x$ is the inverse of f :

$$
\begin{aligned}
& g f(x)=g(2 x)=10 x=x \\
& f g(x)=f(5 x)=10 x=x
\end{aligned}
$$

for all $x \in \mathbb{Z}_{q}$

