Name: Sutrous

Problem 1 (4 points). Circle all the true statements, no justification necessary. (a) $S_3 \cong D_3$. (b) S_4 has 8 elements. If has 4! = 24(c) \mathbb{Z}_7^{\times} is a cyclic group. \mathbb{Z}_7 is 6 finite field! (c) S_5 is an abelian group. No! (f) If G and H are groups of order 4, $G \cong H$. $\mathbb{Z}_7 \times \mathbb{Z}_2 \notin \mathbb{Z}_4$ Problem 2 (3 points). Let $f: G \to H$ be an injective group homomorphism. Show that for every $g \in G$, |f(g)| = |g|. For all $n \in \mathbb{Z}$, $f(g^n) = f(g)^n$ fingetive Nove aver, $f(g)^n = e \iff f(g^n) = e (\Longrightarrow) g^n = e$ |g| = smallest posture integer n at $g^n = e$ (∞ if $g^n \neq e$ for all $n \ge 1$) = smallest posture integer n at $f(g)^n = e$ (∞ if $g(g)^n \neq e$ for all $n \ge 1$) = f(g)|

Problem 3 (3 points). True or false: the function $\mathbb{Z}_9 \xrightarrow{f} \mathbb{Z}_9$ given by $x \mapsto 2x$ is a group isomorphism.

True.
$$\underline{2nog}$$

1) f is a group homomorphism: for all $\pi, y \in \mathbb{Z}_q$,
 $f(\pi+y) = 2(\pi+y) = 2\pi + 2y = f(\pi) + f(y)$
2) $g: \mathbb{Z}_q \rightarrow \mathbb{Z}_q$ given by $g(\pi) = 5\pi$ is the inverse of $f:$
 $gf(\pi) = g(2\pi) = 10\pi = \pi$
 $fg(\pi) = f(5\pi) = 10\pi = \pi$
 $for all $\pi \in \mathbb{Z}_q$$