
Winter 2019 Quiz 9 Math 412

Name:

Problem 1 (4 points). Circle all the true statements, no justification necessary.

(a) S3
⇠= D3.

(b) S4 has 8 elements.

(c) S5 is an abelian group.

(d) (1 2 3) is an odd permutation.

(e) Z⇥
7 is a cyclic group.

(f) If G and H are groups of order 4, G ⇠= H.

Problem 2 (3 points). Let f : G �! H be an injective group homomorphism. Show that for
every g 2 G, |f(g)| = |g|.

Problem 3 (3 points). True or false: the function Z9 �! Z9 given by x 7! 2x is a group isomor-
phism.
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