Name:

Problem 1 (4 points). Circle all the true statements, no justification necessary.
(a) $S_{3} \cong D_{3}$.
(d) (123) is an odd permutation.
(b) S_{4} has 8 elements.
(e) \mathbb{Z}_{7}^{\times}is a cyclic group.
(c) S_{5} is an abelian group.
(f) If G and H are groups of order $4, G \cong H$.

Problem 2 (3 points). Let $f: G \longrightarrow H$ be an injective group homomorphism. Show that for every $g \in G,|f(g)|=|g|$.

Problem 3 (3 points). True or false: the function $\mathbb{Z}_{9} \longrightarrow \mathbb{Z}_{9}$ given by $x \mapsto 2 x$ is a group isomorphism.

Problem 4 (Bonus). The subgroup of S_{n} formed by all even permutations is denoted A_{n}. Show that A_{n} is generated by all the 3 -cycles.

