Name:

Problem 1 (4 points). For each pair (G, \cdot), where \cdot is an operation on the set G, circle all the ones that are groups.
a) $(\mathbb{Z},+)$.
b) (\mathbb{Z}, \times).
c) $(\mathbb{N},+)$.
d) $\left(\mathbb{R}_{>0}, \times\right)$.
e) $\left(\mathbb{R}_{\geqslant 0},+\right)$.
f) $\left(\mathbb{Z}_{27},+\right)$.

Problem 2 (3 points). State the first isomorphism theorem for rings.

Problem 3 (3 points). Consider the ring $R=\mathbb{Z}[x]$ and the ideal

$$
I=\{p(x) \in R \text { such that } 3 \mid p(0)\}
$$

Use the first isomorphism theorem for rings to prove that $R / I \cong \mathbb{Z}_{3}$.

Problem 4 (Bonus). Prove the Third Isomorphism Theorem for rings:
If $I \subseteq J$ are ideals of the ring R, then the quotient ring $(R / I) /(J / I)$ is isomorphic to R / J.

