Name:

Problem 1 (4 points). For each pair (G, \cdot) , where \cdot is an operation on the set G, circle all the ones that are groups.

- a) $(\mathbb{Z}, +)$. b) (\mathbb{Z}, \times) . c) $(\mathbb{R}_{\geq 0}, \times)$. d) $(\mathbb{R}_{\geq 0}, \times)$.
- c) $(\mathbb{N}, +)$. f) $(\mathbb{Z}_{27}, +)$.

Problem 2 (3 points). State the first isomorphism theorem for rings.

Problem 3 (3 points). Consider the ring $R = \mathbb{Z}[x]$ and the ideal

 $I = \{ p(x) \in R \text{ such that } 3 \mid p(0) \}.$

Use the first isomorphism theorem for rings to prove that $R/I \cong \mathbb{Z}_3$.

Problem 4 (Bonus). Prove the Third Isomorphism Theorem for rings: If $I \subseteq J$ are ideals of the ring R, then the quotient ring (R/I)/(J/I) is isomorphic to R/J.