Name:
Solutions

Problem 1 (6 points). Circle all the subsets that are ideals of the given ring.
a) The subset of \mathbb{Z} of all even numbers.
(d)) All linear combinations of 6 and 9 in \mathbb{Z}. Aka (3)
b) The subset of \mathbb{Z} of all odd numbers. $1+1=2$
(e) $\{0\} \subseteq \mathbb{R}[x]$. $\left\{0_{R}\right\}$ is always on ideal $M R$
(c) Matrices in $M_{2}(\mathbb{Z})$ with even entries.
f) The subset of $\mathbb{Z}[x]$ all $p \in \mathbb{Z}[x]$ with $p(0)=1$. $\quad 1+1=2 \underset{\square}{\square}$

Problem 2 (4 points). Consider the polynomials $p(x)=x^{2}+7 x+6$ and $q(x)=x^{2}-5 x-6$ in $\mathbb{Q}[x]$. Use the Euclidean algorithm to find their greatest common divisor.

$$
\begin{aligned}
& x^{2}+7 x+6=1 \cdot\left(x^{2}-5 x-6\right)+\underbrace{12 x+12} \\
&=12(x+1) \\
& x^{2}-5 x-6=(x-6)(x+1)+0 \\
& \Longrightarrow \operatorname{gcd}(p, q)=x+1
\end{aligned}
$$

And the linear combination we are searching for is:

$$
x+1=\frac{1}{12}\left(x^{2}+7 x+6\right)-\frac{1}{12}\left(x^{2}-5 x-6\right)
$$

