Name:

Problem 1 (6 points). Circle all the subsets that are ideals of the given ring.
a) The subset of \mathbb{Z} of all even numbers.
d) All linear combinations of 6 and 9 in \mathbb{Z}.
b) The subset of \mathbb{Z} of all odd numbers.
e) $\{0\} \subseteq \mathbb{R}[x]$.
c) Matrices in $M_{2}(\mathbb{Z})$ with even entries.
f) The subset of $\mathbb{Z}[x]$ all $p \in \mathbb{Z}[x]$ with $p(0)=1$.

Problem 2 (4 points). Consider the polynomials $p(x)=x^{2}+7 x+6$ and $q(x)=x^{2}-5 x-6$ in $\mathbb{Q}[x]$. Use the Euclidean algorithm to find their greatest common divisor.

Problem 3 (Bonus). Let R be a commutative ring. An element $f \in R$ is called nilpotent if $f^{n}=0$ for some $n \geqslant 1$. Show that the set of all nilpotent elements in R forms an ideal. Fun fact: this is called the nilradical of R.

