Name: Solutions

Problem 1 (5 points). Circle all the true statements. No justification required.

- (a) \mathbb{Z}_7 is a field.
- b) \mathbb{Z}_9 is a domain. $3 \cdot 3 = 0$

- (d) In a field, ab = 0 implies a = 0 or b = 0. find \Rightarrow domain e) Every subring of a field is a field. $Z \subseteq \mathbb{Q}$ subring
- c) Every domain is a field. Z domain not a field (f) Every subring of a domain is a domain.

Problem 2 (5 points). Let R and S be rings, and $\varphi : R \to S$ be a ring homomorphism. Prove that the image of φ is a subring of S.

By definition of ring homemorphism,

$$p(a) + p(b) = p(a+b) \longrightarrow closed for +$$

 $p(a) p(b) = p(ab) \in image of p \longrightarrow closed for \cdot$
 $p(1) = 1 \in image of p$

Also,
$$\varphi(0) = 0 \in image of \varphi$$
, since
 $\varphi(0) = \varphi(1-1) = \varphi(1) - \varphi(1) = 0$ so $0 \in image of \varphi$
Therefore, for any element in the image of φ , say $\varphi(x)$,
 $\varphi(x) + \varphi(-x) = \varphi(x-x) = \varphi(0) = 0$
so $\varphi(-x) = -\varphi(x)$ and the image of φ is closed for
additive inverses.