Name:

Problem 0 (3 points). Circle all the pairs $S \subseteq R$ where S is a subring of R.
(a) $\mathbb{Z} \subseteq \mathbb{Q}$.
(b) $\mathbb{N} \subseteq \mathbb{Q}$.
(c) $\varnothing \subseteq \mathbb{Z}$.
(d) $\mathbb{R} \subseteq \mathbb{C}$.

Problem 1 (4 points). Give an example of a commutative subring of the ring $M_{2}(\mathbb{R})$ of 2×2 matrices with real entries.

Problem 2 (3 points). True or false? Justify your answer with a proof if it is true or a counterexample if it is false.

Let R be a ring and $a, b \in R$. If $a b=a$, then $b a=a$.

Problem 3 (Bonus). An element r in a ring R is said to be an idempotent if $r^{2}=r$. Prove that if R is a ring in which every element is an idempotent, then

- R is commutative, and
- $r+r=0$ for every $r \in R$.

