Name:

Problem 0 (2 points). Which of the statements below *must* be true in any ring?

Problem 1 (4 points). Prove that if the equation $ax \equiv b \mod n$ has a solution, then (a, n)|b.

Let
$$k \in \mathbb{Z}$$
 be a solution to the equation. Then for some q ,
 $ak-b = nq \iff b = a k - nq$.
Since $(a,n) (a and $(a,n) | n$, then
 $(a,n) | ak-nq = b$.$

Problem 2 (4 points). True or false? Justify your answer with a proof if it is true or a counterexample if it is false.

If (a, n) = 1, then [a] has a multiplicative inverse in \mathbb{Z}_n .

true. If
$$(a,n)=1$$
, there exist $v, v \in \mathbb{Z}$ such that
 $ua + vn = 1$. then
 $ua \equiv 1 - vn \equiv 1 \pmod{n}$
and $[u]$ is a multiplicative inverse of $[a]$ in \mathbb{Z}_n .