Name:

Problem 0 (2 points). Which of the statements below must be true in any ring?
(a) Addition is associative.
(d) Multiplication is commutative.
(b) Multiplication is associative.
(e) Every element has an additive inverse.
(c) Addition is commutative.
(f) Every non-zero element has a multiplicative inverse.

Problem 1 (4 points). Prove that if the equation $a x \equiv b \bmod n$ has a solution, then $(a, n) \mid b$. Let $k \in \mathbb{Z}$ be a solution to the equation. Then for some q, $a k-b=n q \Leftarrow b=a k-n q$ Since (a, n) (and $(a, n) \mid n$, then

$$
(a, n) \mid a k-n q=b
$$

Problem 2 (4 points). True or false? Justify your answer with a proof if it is true or a counterexample if it is false.

If $(a, n)=1$, then $[a]$ has a multiplicative inverse in \mathbb{Z}_{n}.
true. If $(a, n)=1$, there exist $u, v \in \mathbb{Z}$ such that $m a+v_{n}=1$ then
$\mu a \equiv 1-v n \equiv 1$ (mod n)
and $[u]$ is a muthplicative inverse of $[a]$ in \mathbb{Z}_{n}

