Name:

Problem 0 (2 points). Which of the statements below *must* be true in any ring?

- (a) Addition is associative.
- (d) Multiplication is commutative.
- (b) Multiplication is associative.
- (e) Every element has an additive inverse.
- (c) Addition is commutative. (f) Every nor
- (f) Every non-zero element has a multiplicative inverse.

Problem 1 (4 points). Prove that if the equation $ax \equiv b \mod n$ has a solution, then (a, n)|b.

Problem 2 (4 points). True or false? Justify your answer with a proof if it is true or a counterexample if it is false.

If (a, n) = 1, then [a] has a multiplicative inverse in \mathbb{Z}_n .

Problem 3 (Bonus). If a > b > 2 are integers, then $2^b - 1$ does not divide $2^a + 1$.