Name: Solutions

Problem 0 (2 points). State the Fundamental Theorem of Arithmetic.

Every integer $n \neq 0, 1, -1$ can be written as a poduct of primes. This factorization is unique: $\frac{1}{2}$ Ri, ..., Ps, 91, ..., 97 are primes such that $n = R_1 ..., P_s = 91 ..., 97$, then x = s and $R_1 = \pm 9_1, ..., R_n = \pm 9_n$, up to podulleg relabling the 9's.

Problem 1 (4 points). Let a and n be positive integers. Prove that if $[a] = [1] \mod n$ then (a, n) = 1.

By definition, [a] = [1] means that $a = q_{n+1}$ for some $q \in \mathbb{Z}$. Suppose d | a and d | n. then $d | (a-q_n) = 1$, implying $d = \pm 1$. then ± 1 are the only common diversors $\overline{q} | a and n and (q_n) = 1$.

Problem 2 (4 points). True or false? Justify your answer with a proof if it is true or a counterexample if it is false.

Given positive integers a and n, if (a, n) = 1, then $[a] = [1] \mod n$.

False. Take a = 2 and n = 3. We do have (2,3) = 1, but $2 \neq 1 \pmod{3}$.