Name:

Problem 0 (2 points). State the Fundamental Theorem of Arithmetic.

Problem 1 (4 points). Let a and n be positive integers. Prove that if $[a]=[1] \bmod n$ then $(a, n)=1$.

Problem 2 (4 points). True or false? Justify your answer with a proof if it is true or a counterexample if it is false.

Given positive integers a and n, if $(a, n)=1$, then $[a]=[1] \bmod n$.

Problem 3 (Bonus). Let a be any positive integer, and b its last (i.e., units) digit. Suppose that the last digit of a^{d} is 1. Prove that the last digits of a^{n} and b^{r} are the same, where $n=d q+r$ with $q, r \in \mathbb{Z}$ and $0 \leqslant r<d$.

