Name:

Problem 0 (2 points). State the Fundamental Theorem of Arithmetic.

Problem 1 (4 points). Let a and n be positive integers. Prove that if $[a] = [1] \mod n$ then (a, n) = 1.

Problem 2 (4 points). True or false? Justify your answer with a proof if it is true or a counterexample if it is false.

Given positive integers a and n, if (a, n) = 1, then $[a] = [1] \mod n$.

Problem 3 (Bonus). Let *a* be any positive integer, and *b* its last (i.e., units) digit. Suppose that the last digit of a^d is 1. Prove that the last digits of a^n and b^r are the same, where n = dq + r with $q, r \in \mathbb{Z}$ and $0 \leq r < d$.