Name: Solutions

Problem 1 (3 points). Let G be a group and N be a subgroup of G. When does the set of cosets G/N have a natural group structure?

Problem 2 (4 points). Show that
$$\mathbb{Z} \times \mathbb{Z}/((1,1)) \cong \mathbb{Z}$$
.
the map $\varphi : \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$ is a group homomorphism:
 $(a,b) + \varphi(c,d) = (a-b) + (c-d)$
 $= (a+c) - (b+d) = \varphi((a+c,b+d))$
However, φ is surgetive: given any $n \in \mathbb{Z}$, $n = \varphi(n, 0)$.
Tinally, $(a,b) \in kan \ \varphi := a-b = 0 \iff a=b \iff (a,b) \in \langle (1,1) \rangle$.
Tinally, $(a,b) \in kan \ \varphi := a-b = 0 \iff a=b \iff (a,b) \in \langle (1,1) \rangle$.
The Ford I somorphism theorem, $\mathbb{Z} \times \mathbb{Z}/\langle (1,1) \rangle \cong \mathbb{Z}$.
Problem 3 (3 points). True or false: any two elements in the same conjugacy class have the same order.
Thue. If $h, h' \in G$ are in the same conjugacy class, that means there exists $g \in G$ such that $h' = ghg^{-1}$.
Given any $n > 1$,
 $(ghg^{-1})^n = (ghg^{-1})(ghg^{-1}) \cdots (ghg^{-1}) = gh'g^{-1}$
then $gh'g^{-1} = e \iff h^n = g^{-1}g = e$.
So $|h| = |h'|$.