Name: Solutions

Problem 1 (3 points). Define normal subgroup.
A subgroup N of G is normal if for all $g \in N, g N=N g$ (as sets).

Problem 2 (4 points). Prove that the kernel of a group homomorphism is a normal subgroup.
Let $f: G \rightarrow H$ be a group homomorphism.

- $e_{G} \in \operatorname{ken} f, \sin a f\left(e_{G}\right)=e_{H}$.
- if $g h \in \operatorname{ker} f \quad f(g h)=f(g) f(h)=e_{H} e_{H}=e_{H} \quad$ s $\theta g h \in$ bar f
- if $g \in \operatorname{ken} f, f\left(g^{-1}\right)=f(g)^{-1}=e_{H} H^{-1}=e_{H}$, so $g^{-1} \in$ ken f.

Finally, let $g \in G, h \in$ ben H. Then $g^{-1} g^{-1} \in e n$, since

$$
f\left(g h g^{-1}\right)=f(g) f(\underbrace{\left(h^{-1}\right)}_{\text {kerf }} f\left(g^{-1}\right)=f(g) f\left(g^{-1}\right)=f\left(g g^{-1}\right)=e_{H}
$$

this shows that ken f is a normal subgroup.
Problem 3 (3 points). True or false: a group of order 15 can act on a set with 7 elements in such a way that there are exactly 2 orbits.
False. Suppose that a group G of oder 15 does act on a set X eth 7 elements, and there are exactly two abate, $\theta_{1}=\theta\left(x_{1}\right) \neq \theta_{2}=\theta\left(n_{2}\right)$. Fy the Orrat-Stabizizer theorem, $\left|\theta_{1}\right|,\left|\theta_{2}\right|$ must both disrobe $|G|=15$. on the then hand, X has 7 elements, so $\left|\theta_{1}\right|$ and $\left|\theta_{2}\right|$ can only be 1,3 or 5 .
raeover, $x=\theta_{1} \uplus \theta_{2}$, so $\left|\theta_{1}\right|+\left|\theta_{2}\right|=7$. But this is impossible! dugout union

$$
\begin{array}{ll}
1+3=4 & 1+1=2 \\
1+5=6 & 3+3=6 \\
3+5=8 & 5+5=10
\end{array}
$$

