Problem 1 (3 points). Define normal subgroup.

A subgroup
$$N$$
 of G is normal if for all $g \in N$, $g N = Ng$ (as sets).

Problem 2 (4 points). Prove that the kernel of a group homomorphism is a normal subgroup.

Let
$$f: G \rightarrow H$$
 be a group bornour pluran.
 $e_{g} \in ken f$, since $f(e_{g}) = e_{H}$.
 $e_{g} \in ken f$, $f(gh) = f(g)f(h) = e_{H}e_{H} = e_{H}$ so ghe ken f
 $e_{f}g \in ken f$, $f(g^{-1}) = f(g)^{-1} = e_{H}^{-1} = e_{H}$, so $g^{-1} \in ken f$.
Finally, let $g \in G$, $h \in ken H$. then $ghg^{-1} \in ken f$, $h = e_{H}$.
 $f(ghg^{-1}) = f(g)f(h^{-1})f(g^{-1}) = f(g)f(g^{-1}) = f(gg^{-1}) = e_{H}$.
this shows that ken f is a normal subgroup.

0

Problem 3 (3 points). True or false: a group of order 15 can act on a set with 7 elements in such a way that there are exactly 2 orbits.

False. Suppose that a group G of order 15 does act on a set X
with 7 elements, and there are exactly two abouts,
$$Q = O(x_1) \neq Q = O(x_2)$$
.
By the Orist-Stabilizer theorem, $|Q_1|$, $|Q_1|$ must both divide $|G| = 15$. On the other
hand, X has 7 elements, so $|Q_1|$ and $|Q_2|$ can only be $1,3$ or 5.
Itaeover, $X = Q_1 + Q_2$, so $|Q_1| + |Q_2| = 7$. But this is impossible.
digoniturion $|+3 = 4$ $|+1 = 2$
 $1+5 = 6$ $3+3 = 6$
 $3+5 = 8$ $5+5 = 10$