
Winter 2019 Quiz 11 Math 412

Name:

Problem 1 (3 points). Define normal subgroup.

Problem 2 (4 points). Prove that the kernel of a group homomorphism is a normal subgroup.

Problem 3 (3 points). True or false: a group of order 15 can act on a set with 7 elements in such
a way that there are exactly 2 orbits.
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