Name:

Problem 1 (3 points). Define normal subgroup.

Problem 2 (4 points). Prove that the kernel of a group homomorphism is a normal subgroup.

Problem 3 (3 points). True or false: a group of order 15 can act on a set with 7 elements in such a way that there are exactly 2 orbits.

Problem 4 (Bonus). Consider an action of a finite group G on a finite set X. Prove Burnside's Lemma¹: the number of distinct orbits is equal to

$$\frac{1}{|G|} \sum_{g \in G} \left| \left\{ x \in X \, | \, g \cdot x = x \right\} \right|.$$

¹Fun fact: this was not proved by Burnside. Some call it the lemma that is not Burnside's.