Name:

Problem 1 (4 points). Circle all the true statements, no justification necessary.
(a) D_{7} contains an element of order 3 .
(c) If G and H are groups of order $17, G \cong H$.
(b) $\mathbb{Z}_{4}^{\times} \cong \mathbb{Z}_{3}^{\times}$.
(d) Faithful actions have no fixed points.

Problem 2 (3 points). State Lagrange's Theorem.

Problem 3 (3 points). True or false: given any group G of order 16 and any group H of order 24, there is no injective homomorphism $G \longrightarrow H$.

Problem 4 (Bonus). Note that 113 is prime, so $\mathbb{Z}_{113}^{\times}$is a cyclic group. Let $a \in \mathbb{Z}$. To check whether $[a]$ is a generator for $\mathbb{Z}_{113}^{\times}$by using the definition naïvely, we would need to evaluate $a^{n} \bmod 113$ for all $n<112$. By being clever, what is the fewest number of values of n for which we would need to check $a^{n} \not \equiv 1 \bmod 113$ to show that $[a]$ is a generator, and what are these values of n ? Justify your answer.

