Name:

Problem 1 (4 points). Circle all the true statements, no justification necessary.

- (a) D_7 contains an element of order 3.
- (c) If G and H are groups of order 17, $G \cong H$.

(b) $\mathbb{Z}_4^{\times} \cong \mathbb{Z}_3^{\times}$.

(d) Faithful actions have no fixed points.

Problem 2 (3 points). State Lagrange's Theorem.

Problem 3 (3 points). True or false: given any group G of order 16 and any group H of order 24, there is no injective homomorphism $G \longrightarrow H$.

Problem 4 (Bonus). Note that 113 is prime, so $\mathbb{Z}_{113}^{\times}$ is a cyclic group. Let $a \in \mathbb{Z}$. To check whether [a] is a generator for $\mathbb{Z}_{113}^{\times}$ by using the definition naïvely, we would need to evaluate $a^n \mod 113$ for all n < 112. By being clever, what is the fewest number of values of n for which we would need to check $a^n \not\equiv 1 \mod 113$ to show that [a] is a generator, and what are these values of n? Justify your answer.