DEFINITION: A subgroup N of a group G is **normal** if for all $g \in G$, the left and right N-cosets gN and Ng are the *same* subsets of G.

PROPOSITION: For any subgroup H of a group G, we have |H| = |gH| = |Hg| for all $g \in G$.

THEOREM 8.11: A subgroup N of a group G is **normal** if and only if for all $g \in G$,

 $gNg^{-1} \subseteq N.$

Here, the set $gNg^{-1} := \{gng^{-1} \mid n \in N\}.$

NOTATION: If $H \subseteq G$ is any subgroup, then G/H denotes the set of left cosets of H in G. It elements are sets denoted gH where $g \in G$. Recall that the cardinality of G/H is called the **index** of H in G. We sometimes write $H \trianglelefteq G$ to indicate that H is a normal subgroup of G.

- A. WARMUP
 - (1) Let $2\mathbb{Z}$ be the subgroup of even integers in \mathbb{Z} . Fix any $n \in \mathbb{Z}$. Describe the left coset $n + 2\mathbb{Z}$ (your answer will depend on the parity of n). Describe the right coset $2\mathbb{Z} + n$. Is $2\mathbb{Z}$ a **normal** subgroup of \mathbb{Z} ? What is its index? Describe the partition of \mathbb{Z} into left (respectively, right) $2\mathbb{Z}$ -cosets.
 - (2) Let $K = \langle (23) \rangle \subset S_3$. Find the right coset K(12). Find the left coset (12)K. Is K a normal subgroup of S_3 ?
 - (3) Let $N = \langle (123) \rangle \subset S_3$. Find the right coset N(12). Find the left coset (12)N. Describe the partition of S_3 into left *N*-cosets. Compare to the partition into right *N*-cosets. Is gN = Ng for all $g \in S_3$? Is *N* a normal subgroup of S_3 ?

B. EASY PROOFS

- (1) Prove that if G is abelian, then *every subgroup* K is normal.
- (2) Prove that for any subgroup K, and any $g \in K$, we have gK = Kg.
- (3) Find an example of subgroup H of G which is normal but *does not satisfy* hg = gh for all $h \in H$ and all $g \in G$.

C. Let G be the group (S_5, \circ) . Use Theorem 8.11 to determine which of the following are **normal** subgroups.

- (1) The trivial subgroup e.
- (2) The whole group S_5 .
- (3) The subgroup A_5 of *even* permutations.
- (4) The subgroup H generated by (123).
- (5) The subgroup S_4 of permutations that fix 5.
- (6) Use Lagrange's Theorem to compute the index of each subgroup in (1)–(5).

D. Let $G \xrightarrow{\phi} H$ be a group homomorphism.

- (1) Prove that the kernel of ϕ is a *normal subgroup* of G.
- (2) Prove that the group $SL_n(\mathbb{Q})$ of determinant one matrices with entries in \mathbb{Q} is a normal subgroup of $GL_n(\mathbb{Q})$.

E. CONJUGATION. Let G be a group, and $g, h \in G$. We call the element ghg^{-1} is the **conjugate** of h by g. Let $c_g : G \to G$ be the function given by the rule $c_g(h) = ghg^{-1}$. We call this function **conjugation by** g.

- (1) Show that, if $h_1, h_2 \in G$, then $c_g(h_1)c_g(h_2) = c_g(h_1h_2)$. Thus, c_g is a group homomorphism from G to itself.
- (2) Show that $c_{g^{-1}} \circ c_g = c_g \circ c_{g^{-1}}$ is the identity on G. Conclude that c_g is an **automorphism** of G: a group isomorphism from G to itself.
- (3) Let $G = S_n$, and h = (ab) be a 2-cycle. What is $c_g(h)$?¹ If instead $h = (a_1 a_2 \cdots a_t)$ is a t-cycle, what do you think $c_g(h)$ is? If you know how to write h as a product of disjoint cycles, how can you write $c_g(h)$ as a product of disjoint cycles?
- (4) Interpret the last problem as follows: $c_g(h)$ is "the same permutation as h up to relabeling the elements $\{1, \ldots, n\}$ by g."
- (5) Now let $G = GL_n(\mathbb{R})$. If g = S and h = A are matrices in G, explain what is the geometric meaning of $c_g(h)$. Compare with the previous part.

F. THE PROOF OF THEOREM 8.11. Let G be a group and H some subgroup. Prove that the following are equivalent by showing (1) implies (2) implies (3) implies (4) implies (5) implies (1).

- (1) H is normal.
- (2) $gHg^{-1} \subseteq H$ for all $g \in G$.
- (3) $g^{-1}Hg \subseteq H$ for all $g \in G$.
- (4) $g^{-1}Hg = H$ for all $g \in G$.
- (5) $gHg^{-1} = H$ for all $g \in G$.

G. Suppose that H is an index two subgroup of G.

- (1) Prove that the partition of G up into left cosets is the disjoint union of H and $G \setminus H$.
- (2) Prove that the partition of G up into right cosets is the disjoint union of H and $G \setminus H$.
- (3) Prove that for every $g \in G$, gH = Hg.
- (4) Prove the THEOREM: Every subgroup of index two in G is normal.

H. OPERATIONS ON COSETS: Let (G, \circ) be a group and let $N \subseteq G$ be a normal subgroup.

- (1) Explain why Ng = gN. Explain why both cosets contain g.
- (2) Take arbitrary $ng \in Ng$. Prove that there exists $n' \in N$ such that ng = gn'.
- (3) Take any $x \in g_1N$ and any $y \in g_2N$. Prove that $xy \in g_1g_2N$.
- (4) Define a binary operation \star on the set G/N of left N-cosets as follows:

$$G/N \times G/N \to G/N$$
 $g_1N \star g_2N = (g_1 \circ g_2)N.$

Think through the meaning: the elements of G/N are *sets* and the operation \star combines two of these sets into a third set: how? Explain why the binary operation \star is **well-defined.** Where are you using normality of N?

- (5) Prove that the operation \star in (4) is associative.
- (6) Prove that N is an identity for the operation \star in (4).
- (7) Prove that every coset $gN \in G/N$ has an inverse under the operation \star in (4).
- (8) Conclude that $(G/N, \star)$ is a group.

¹Hint: You did this on the homework, so just remember it instead of reproving it.