Definition: A subgroup N of a group G is normal if for all $g \in G$, the left and right N-cosets $g N$ and $N g$ are the same subsets of G.
Proposition: For any subgroup H of a group G, we have $|H|=|g H|=|H g|$ for all $g \in G$.
THEOREM 8.11: A subgroup N of a group G is normal if and only if for all $g \in G$,

$$
g N g^{-1} \subseteq N
$$

Here, the set $g N g^{-1}:=\left\{g n g^{-1} \mid n \in N\right\}$.
Notation: If $H \subseteq G$ is any subgroup, then G / H denotes the set of left cosets of H in G. It elements are sets denoted $g H$ where $g \in G$. Recall that the cardinality of G / H is called the index of H in G. We sometimes write $H \unlhd G$ to indicate that H is a normal subgroup of G.

A. WARMUP

(1) Let $2 \mathbb{Z}$ be the subgroup of even integers in \mathbb{Z}. Fix any $n \in \mathbb{Z}$. Describe the left coset $n+2 \mathbb{Z}$ (your answer will depend on the parity of n). Describe the right coset $2 \mathbb{Z}+n$. Is $2 \mathbb{Z}$ a normal subgroup of \mathbb{Z} ? What is its index? Describe the partition of \mathbb{Z} into left (respectively, right) 2Z-cosets.
(2) Let $K=\langle(23)\rangle \subset \mathcal{S}_{3}$. Find the right coset $K(12)$. Find the left $\operatorname{coset}(12) K$. Is K a normal subgroup of \mathcal{S}_{3} ?
(3) Let $N=\langle(123)\rangle \subset S_{3}$. Find the right coset $N(12)$. Find the left coset (12)N. Describe the partition of \mathcal{S}_{3} into left N-cosets. Compare to the partition into right N-cosets. Is $g N=N g$ for all $g \in \mathcal{S}_{3}$? Is N a normal subgroup of \mathcal{S}_{3} ?

B. Easy Proofs

(1) Prove that if G is abelian, then every subgroup K is normal.
(2) Prove that for any subgroup K, and any $g \in K$, we have $g K=K g$.
(3) Find an example of subgroup H of G which is normal but does not satisfy $h g=g h$ for all $h \in H$ and all $g \in G$.
C. Let G be the group $\left(S_{5}, \circ\right)$. Use Theorem 8.11 to determine which of the following are normal subgroups.
(1) The trivial subgroup e.
(2) The whole group S_{5}.
(3) The subgroup A_{5} of even permutations.
(4) The subgroup H generated by (123).
(5) The subgroup S_{4} of permutations that fix 5 .
(6) Use Lagrange's Theorem to compute the index of each subgroup in (1)-(5).
D. Let $G \xrightarrow{\phi} H$ be a group homomorphism.
(1) Prove that the kernel of ϕ is a normal subgroup of G.
(2) Prove that the group $S L_{n}(\mathbb{Q})$ of determinant one matrices with entries in \mathbb{Q} is a normal subgroup of $G L_{n}(\mathbb{Q})$.
E. Conjugation. Let G be a group, and $g, h \in G$. We call the element $g h g^{-1}$ is the conjugate of h by g. Let $c_{g}: G \rightarrow G$ be the function given by the rule $c_{g}(h)=g h g^{-1}$. We call this function conjugation by g.
(1) Show that, if $h_{1}, h_{2} \in G$, then $c_{g}\left(h_{1}\right) c_{g}\left(h_{2}\right)=c_{g}\left(h_{1} h_{2}\right)$. Thus, c_{g} is a group homomorphism from G to itself.
(2) Show that $c_{g^{-1}} \circ c_{g}=c_{g} \circ c_{g^{-1}}$ is the identity on G. Conclude that c_{g} is an automorphism of G : a group isomorphism from G to itself.
(3) Let $G=\mathcal{S}_{n}$, and $h=(a b)$ be a 2-cycle. What is $c_{g}(h) ?^{1}$ If instead $h=\left(a_{1} a_{2} \cdots a_{t}\right)$ is a t-cycle, what do you think $c_{g}(h)$ is? If you know how to write h as a product of disjoint cycles, how can you write $c_{g}(h)$ as a product of disjoint cycles?
(4) Interpret the last problem as follows: $c_{g}(h)$ is "the same permutation as h up to relabeling the elements $\{1, \ldots, n\}$ by g."
(5) Now let $G=\mathrm{GL}_{n}(\mathbb{R})$. If $g=S$ and $h=A$ are matrices in G, explain what is the geometric meaning of $c_{g}(h)$. Compare with the previous part.
F. The Proof of Theorem 8.11. Let G be a group and H some subgroup. Prove that the following are equivalent by showing (1) implies (2) implies (3) implies (4) implies (5) implies (1).
(1) H is normal.
(2) $g H g^{-1} \subseteq H$ for all $g \in G$.
(3) $g^{-1} H g \subseteq H$ for all $g \in G$.
(4) $g^{-1} H g=H$ for all $g \in G$.
(5) $g H^{-1}=H$ for all $g \in G$.
G. Suppose that H is an index two subgroup of G.
(1) Prove that the partition of G up into left cosets is the disjoint union of H and $G \backslash H$.
(2) Prove that the partition of G up into right cosets is the disjoint union of H and $G \backslash H$.
(3) Prove that for every $g \in G, g H=H g$.
(4) Prove the Theorem: Every subgroup of index two in G is normal.
H. Operations on Cosets: Let (G, \circ) be a group and let $N \subseteq G$ be a normal subgroup.
(1) Explain why $N g=g N$. Explain why both cosets contain g.
(2) Take arbitrary $n g \in N g$. Prove that there exists $n^{\prime} \in N$ such that $n g=g n^{\prime}$.
(3) Take any $x \in g_{1} N$ and any $y \in g_{2} N$. Prove that $x y \in g_{1} g_{2} N$.
(4) Define a binary operation \star on the set G / N of left N-cosets as follows:

$$
G / N \times G / N \rightarrow G / N \quad g_{1} N \star g_{2} N=\left(g_{1} \circ g_{2}\right) N .
$$

Think through the meaning: the elements of G / N are sets and the operation \star combines two of these sets into a third set: how? Explain why the binary operation \star is well-defined. Where are you using normality of N ?
(5) Prove that the operation \star in (4) is associative.
(6) Prove that N is an identity for the operation \star in (4).
(7) Prove that every coset $g N \in G / N$ has an inverse under the operation \star in (4).
(8) Conclude that $(G / N, \star)$ is a group.

[^0]
[^0]: ${ }^{1}$ Hint: You did this on the homework, so just remember it instead of reproving it.

