Math 412. Adventure sheet on $\S 2.2$ and $\S 2.3$: Arithmetic in \mathbb{Z}_{N}

DEfinition: For a positive integer N, \mathbb{Z}_{N} is the set of congruence classes of integers modulo N.
A. RECAP FROM LAST TIME:
(1) What are the elements of \mathbb{Z}_{3} ? What are the elements of the elements of \mathbb{Z}_{3} ? ${ }^{1}$
(2) How many elements are in \mathbb{Z}_{N} in general? Why?
(3) Given two elements $[x]$ and $[y]$ in \mathbb{Z}_{N}, we came up for a rule for adding $[x]$ and $[y]$ to get another element in \mathbb{Z}_{N}. In the book this was denoted $[x] \oplus[y]$ in $\S 2.2$ and then denoted $[x]+[y]$ in $\S 2.3$.
(4) Compute $[120]+[13]$ and $[-19]+[23]$ in \mathbb{Z}_{6}.
(5) What is the general rule for $[x]+[y]$ in \mathbb{Z}_{N} ? Why was this rule "easier said than done"? That is, what was crucial to check when posing this definition?
(6) Given two elements $[x]$ and $[y]$ in \mathbb{Z}_{N}, we came up for a rule for multiplying $[x]$ and $[y]$ to get another element in \mathbb{Z}_{N}. In the book this was denoted $[x] \odot[y]$ in $\S 2.2$ and then denoted $[x] \cdot[y]$ or $[x][y]$ in $\S 2.3$.
(7) Compute $[120] \cdot[13]$ and $[-19] \cdot[23]$ in \mathbb{Z}_{6}.
(8) What is the general rule for $[x] \cdot[y]$ in \mathbb{Z}_{N} ? Why was this rule "easier said than done"? That is, what was crucial to check when posing this definition?
(9) Come up with a general rule for $[x]-[y]$ in \mathbb{Z}_{N}. Why is it well-defined?

Solution.

(1) The elements of \mathbb{Z}_{3} are $[0]_{3},[1]_{3}$ and $[2]_{3}$. The element $[0]_{3}$ is the class of all integers that are divisible by 3 . The other two elements $[1]_{3}$ are the classes of all integers of the form $3 q+1$ and $3 q+2$, where q is any integer.
(2) \mathbb{Z}_{n} has n elements: $[0]_{n},[1]_{n}, \ldots,[n-1]_{n}$.
(4) $[120]+[13]=[133]$ and $[-19]+[23]=[4]$.
(5) $[x]+[y]=[x+y]$, but we had to check that this was well-defined! We have seen ${ }^{2}$ examples of "rules" that don't actually work. Remember that some possible rules turn out to not depend only on the input but also depend on how we write it, which is bad. A good rule is one that does not change when we change the way we write the input. In this particular case, we had to see that if we chose different representatives for the class of $[x]$ and $[y]$, the answer would still be the same. For example, $[5]_{2}+[3]_{2}=[8]_{2}=[1]_{1}+[1]_{2}$.
(7) $[120] \cdot[13]=[0]$ and $[-19] \cdot[23]=[-23]$.
(8) See (5).
(9) $[x]-[y]=[x-y]$. If $[x]=\left[x^{\prime}\right]$ and $[y]=\left[y^{\prime}\right]$, then $n \mid\left(x-x^{\prime}\right)$ and $n \mid\left(y-y^{\prime}\right)$, so

$$
n \mid\left(x-x^{\prime}\right)-\left(y-y^{\prime}\right)=(x-y)-\left(x^{\prime}-y^{\prime}\right) .
$$

This means $[x-y]=\left[x^{\prime}-y^{\prime}\right]$.
B. COMMON SENSE PROPERTIES ADDITION AND MULTIPLICATION IN \mathbb{Z}_{N} : Addition and multiplication in \mathbb{Z}_{N} behave a lot like they do in \mathbb{Z}.
(1) Show that $[a]_{N} \cdot[b]_{N}=[b]_{N} \cdot[a]_{N}$ for every $a, b \in \mathbb{Z}$. In other words, prove that multiplication is commutative.
(2) Show that $[a]_{N} \cdot\left([b]_{N}+[c]_{N}\right)=[a]_{N} \cdot[b]_{N}+[a]_{N} \cdot[c]_{N}$ for every $a, b, c \in \mathbb{Z}$.
(3) Can you guess what some of the other properties might be? We will prove them next time.

[^0]
Solution.

(1) $[a]_{N} \cdot[b]_{N}=[a \cdot b]_{N}=[b \cdot a]_{N}=[b]_{N} \cdot[a]_{N}$, where we used that the multiplication of integers is commutative.
(2) $[a]_{N} \cdot\left([b]_{N}+[c]_{N}\right)=[a]_{N}[b+c]_{N}=\left[a(b+c]_{N}=[a b+a c]_{N}=[a]_{N}[b]_{N}+[a]_{N}[c]_{N}\right.$, where we used the same property holds for any integers a, b, c.

C. Solving equations in \mathbb{Z}_{N} :

(1) Rewrite the equation $[a] x=[b]$ in \mathbb{Z}_{N} as a congruence (\equiv) equation involving integers. ${ }^{3}$ What is the relationship between a solution of the congruence equation and the original equation in \mathbb{Z}_{N} ?
(2) Rewrite the equation $[a] x=[b]$ in \mathbb{Z}_{N} as a statement involving division (\mid) of integers. What is the relationship between a solution of the division statement and the original equation in \mathbb{Z}_{N} ?
(3) Show that if $(a, N)=1$, then $[a] x=[1]$ has a solution in \mathbb{Z}_{N}.
(4) Based on the previous part, what technique would you use to solve $[a] x=[1]$?
(5) For more complicated equations, things are a bit harder. Solve the equation $[2] x^{2}-[5]=[0]$ in \mathbb{Z}_{9} by plugging in values.

Solution.

(1) $a y \equiv b \bmod N$ where $[y]_{N}=x$. If $y \in \mathbb{Z}$ is a solution to the congruence equation, then $x=[y]$ is a solution to the original equation in \mathbb{Z}_{N}.
(2) $N \mid(a y-b)$ where $[y]_{N}=x$. If $y \in \mathbb{Z}$ is a solution to the congruence equation, then $x=[y]$ is a solution to the original equation in \mathbb{Z}_{N}.
(3) If $(a, N)=1$, there exist $u, v \in \mathbb{Z}$ such that $a u+N v=1$, so $N \mid(1-a u)$. Then $[a]_{N} \cdot[u]_{N}=$ $[1]_{N}$.
(4) The Euclidean algorithm.
(5) $x=[4],[5]$.
D. SOLVING $[a] x=[b]$ IN \mathbb{Z}_{p} WHEN p IS PRIME:
(1) Prove that if p is prime and $[a] \neq[0]$, then $[a] x=[1]$ always has a solution in \mathbb{Z}_{p}.
(2) Prove that if p is prime and $[a] \neq[0]$, then $[a] x=[0]$ implies $x=[0]$ in \mathbb{Z}_{p}.
(3) Prove that if p is prime and $[a] \neq[0]$, then $[a] x=[1]$ always has a unique solution in \mathbb{Z}_{p}.
(4) Prove that if p is prime and $[a] \neq[0]$, then $[a] x=[b]$ always has a unique solution in \mathbb{Z}_{p}.

Solution.

(1) If p is prime and $[a]_{p} \neq[0]_{p}$, then $p \nmid a$. The only positive divisors of p and 1 and p, so $(a, p)=1$. We then apply C. (2).
(2) If $[a] x=[0]$, and $y \in x$, then $p \mid a y$. Since p is prime and $p \nmid a, p \mid y$. That is, $x=[y]=[0]$.
(3) We already proved that there exists a solution. To see uniqueness, assume $[a] \neq[0]$, and suppose $[a] x_{1}=[a] x_{2}=[1]$. Then $[a]\left(x_{1}-x_{2}\right)=[0]$. By the previous part, $x_{1}-x_{2}=[0]$, so $x_{1}=x_{2}$.
(4) For existence, take some x such that $[a] x=[1]$. Then $[a]([b] x)=[b]$. For uniqueness, assume $[a] \neq[0]$, and suppose $[a] x_{1}=[a] x_{2}=[b]$. Then, $[a]\left(x_{1}-x_{2}\right)=[0]$, so $x_{1}-x_{2}=[0]$ as above.

E. SOLVING $[a] x=[b]$ IN \mathbb{Z}_{N} WHEN N IS NOT PRIME:

[^1](1) Solve $[9] x=[3]$, $[3] x=[1]$, and $[9] x=[4]$ in \mathbb{Z}_{12}.
(2) Let a and n be two integers, not both zero. Prove that $\{r a+s n \mid r, s \in \mathbb{Z}\}=\{k(a, n) \mid k \in \mathbb{Z}\}$.
(3) When does $[a] x=[b]$ have a solution in \mathbb{Z}_{N} ? When does it have multiple solutions?

Solution.

(1) For $[9] x=[3]$, the solution set is $\{[3],[7],[11]\}$. For the others, there are no solutions!
(2) Write $P=\{r a+s n \mid r, s \in \mathbb{Z}\}$ and $S=\{k(a, n) \mid k \in \mathbb{Z}\}$. We will show that $P \subseteq Q$ and $Q \subseteq P$, which proves that $P=Q$.
$Q \subseteq P$: By Theorem 1.2, we know that $(a, n)=a u+n v$ for some $u, v \in \mathbb{Z}$, which shows that $(a, n) \in P$. Taking $r=k u$ and $s=k v$, we get $r a+s b=k(a, n)$, so $k(a, n) \in P$. $P \subseteq Q:$ Fix some $r, s \in \mathbb{Z}$. Since $(a, n) \mid a$ and $(a, n)|b,(a, n)| r a+s b$. Then there exists some $k \in \mathbb{Z}$ such that $k(a, n)=r a+s b$.
(3) By the previous part, $b=r x+s N$ for integers r, s if and only if $(a, N) \mid b$. That is, $b \equiv$ $r x(\bmod N)$ for some r if and only if $(a, N) \mid b$, which characterizes when we can solve $[a] x=[b]$. If $(a, N) \neq 1$, write $d(a, N)=N$. Then $[d] \neq[0]$, and $[a][d]=[0]$. Thus, if $[a] x=[b]$, then also $[a](x+[d])=[0]$, so there are distict solutions.

[^0]: ${ }^{1}$ This is not a riddle!

[^1]: ${ }^{3}$ where x is an unknown element of \mathbb{Z}_{N} !

