Math 412. Adventure sheet on §2.2 and §2.3: Arithmetic in \mathbb{Z}_N

DEFINITION: For a positive integer N, \mathbb{Z}_N is the set of congruence classes of integers modulo N. A. RECAP FROM LAST TIME:

- (1) What are the elements of \mathbb{Z}_3 ? What are the elements of the elements of \mathbb{Z}_3 ?¹
- (2) How many elements are in \mathbb{Z}_N in general? Why?
- (3) Given two elements [x] and [y] in \mathbb{Z}_N , we came up for a rule for adding [x] and [y] to get another element in \mathbb{Z}_N . In the book this was denoted $[x] \oplus [y]$ in §2.2 and then denoted [x] + [y] in §2.3.
- (4) Compute [120] + [13] and [-19] + [23] in \mathbb{Z}_6 .
- (5) What is the general rule for [x] + [y] in \mathbb{Z}_N ? Why was this rule "easier said than done"? That is, what was crucial to check when posing this definition?
- (6) Given two elements [x] and [y] in Z_N, we came up for a rule for multiplying [x] and [y] to get another element in Z_N. In the book this was denoted [x] ⊙ [y] in §2.2 and then denoted [x] · [y] or [x][y] in §2.3.
- (7) Compute $[120] \cdot [13]$ and $[-19] \cdot [23]$ in \mathbb{Z}_6 .
- (8) What is the general rule for $[x] \cdot [y]$ in \mathbb{Z}_N ? Why was this rule "easier said than done"? That is, what was crucial to check when posing this definition?
- (9) Come up with a general rule for [x] [y] in \mathbb{Z}_N . Why is it well-defined?

B. COMMON SENSE PROPERTIES ADDITION AND MULTIPLICATION IN \mathbb{Z}_N : Addition and multiplication in \mathbb{Z}_N behave a lot like they do in \mathbb{Z} .

- (1) Show that $[a]_N \cdot [b]_N = [b]_N \cdot [a]_N$ for every $a, b \in \mathbb{Z}$. In other words, prove that multiplication is commutative.
- (2) Show that $[a]_N \cdot ([b]_N + [c]_N) = [a]_N \cdot [b]_N + [a]_N \cdot [c]_N$ for every $a, b, c \in \mathbb{Z}$.
- (3) Can you guess what some of the other properties might be? We will prove them next time.

C. Solving equations in \mathbb{Z}_N :

- (1) Rewrite the equation [a]x = [b] in \mathbb{Z}_N as a congruence (\equiv) equation involving integers.² What is the relationship between a solution of the congruence equation and the original equation in \mathbb{Z}_N ?
- (2) Rewrite the equation [a]x = [b] in \mathbb{Z}_N as a statement involving division (|) of integers. What is the relationship between a solution of the division statement and the original equation in \mathbb{Z}_N ?
- (3) Show that if (a, N) = 1, then [a]x = [1] has a solution in \mathbb{Z}_N .
- (4) Based on the previous part, what technique would you use to solve [a]x = [1]?
- (5) For more complicated equations, things are a bit harder. Solve the equation $[2]x^2 [5] = [0]$ in \mathbb{Z}_9 by plugging in values.

D. Solving [a]x = [b] in \mathbb{Z}_p when p is prime:

- (1) Prove that if p is prime and $[a] \neq [0]$, then [a]x = [1] always has a solution in \mathbb{Z}_p .
- (2) Prove that if p is prime and $[a] \neq [0]$, then [a]x = [0] implies x = [0] in \mathbb{Z}_p .
- (3) Prove that if p is prime and $[a] \neq [0]$, then [a]x = [1] always has a *unique* solution in \mathbb{Z}_p .
- (4) Prove that if p is prime and $[a] \neq [0]$, then [a]x = [b] always has a *unique* solution in \mathbb{Z}_p .

E. Solving [a]x = [b] in \mathbb{Z}_N when N is not prime:

- (1) Solve $[9]x = [3], [3]x = [1], \text{ and } [9]x = [4] \text{ in } \mathbb{Z}_{12}$.
- (2) Let a and n be two integers, not both zero. Prove that $\{ra + sn \mid r, s \in \mathbb{Z}\} = \{k(a, n) \mid k \in \mathbb{Z}\}.$
- (3) When does [a]x = [b] have a solution in \mathbb{Z}_N ? When does it have multiple solutions?

¹This is not a riddle!

²where x is an unknown element of \mathbb{Z}_N !