
Math 412 Adventure sheet on permutation groups

DEFINITION: The symmetric group Sn is the group of bijections from any set of n objects, which
we usually call simply {1, 2, . . . , n}, to itself. An element of this group is called a permutation of
{1, 2, . . . , n}. The group operation in Sn is composition of mappings.

PERMUTATION STACK NOTATION: The notation
(
1 2 · · · n
k1 k2 · · · kn

)
denotes the permutation that sends

i to ki for each i.

CYCLE NOTATION: The notation (a1 a2 · · · at) refers to the (special kind of!) permutation that sends ai
to ai+1 for i < t, at to a1, and fixes any element other than the ai’s. A permutation of this form is called
a t-cycle. A 2-cycle is also called a transposition.

Remember that a cycle is a function, so if we have cycles side-by-side, this refers to composition of
functions, where the composition as usual goes from right to left.

THEOREM 7.24: Every permutation can be written as a product of disjoint cycles — cycles that all have
no elements in common. Disjoint cycles commute.

THEOREM 7.26: Every permutation can be written as a product of transpositions, not necessarily dis-
joint.

A. WARM-UP WITH ELEMENTS OF Sn
(1) Write the permutation (1 3 5)(2 7) ∈ S7 in permutation stack notation.

(2) Write the permutation
(
1 2 3 4 5 6 7
3 6 1 2 4 7 5

)
∈ S7 in cycle notation.

(3) If σ = (1 2 3)(4 6) and τ = (2 3 4 5 6) in S7, compute στ ; write your answer in stack notation. Now
also write it as a product of disjoint cycles.

(4) With σ and τ as in (4), compute τσ. Is S7 abelian?
(5) List all elements of S3 in cycle notation. What is the order of each?
(6) What is the inverse of (1 2 3)? What is the inverse of (1 2 3 4)? How about (1 2 3 4 5)−1?

Solution.

(1)
(
1 2 3 4 5 6 7
3 7 5 4 1 6 2

)
(2) (1 3)(2 6 7 5 4)

(3)
(
1 2 3 4 5 6 7
2 1 6 5 4 3 7

)
. Same as (1 2)(3 6)( 4 5).

(4) (1 3)(2 4)( 5 6). No, not abelian as στ 6= τσ.
(5) e, (1 2), (2 3), (1 3), (1 2 3), (3 2 1). These have orders 1, 2, 2, 2, 3, 3. Each divides the order of
S3, which is 3! or 6.

(6) (1 2 3)−1 = (3 2 1)? (1 2 3 4)−1 = (4 3 2 1)? (1 2 3 4 5)−1 = (5 4 3 2 1).

B. THE SYMMETRIC GROUP S4
(1) What is the order of S4?
(2) List all 2-cycles in S4. How many are there?
(3) List all 3-cycles in S4. How many are there?
(4) List all 4-cycles in S4. How many are there?



(5) List all 5-cycles in S4.
(6) How many permutations in S4 are not cycles? Find them all.
(7) Find the order of each element in S4. Why are the orders the same for permutations with the same

“cycle type”?
(8) Find cyclic subgroups of S4 of orders 2, 3, and 4.
(9) Find a subgroup of S4 isomorphic to the Klein 4-group. List out its elements.

(10) List out all elements in the subgroup H = 〈(1 2 3), (2 3)〉 of S4 generated by (1 2 3) and (2 3). What
familiar group is this isomorphic to? Can you find four different subgroups of S4 isomorphic to S3?

Solution.
(1) 4! or 24.
(2) The transpositions are (1 2), (1 3), (1 4), (2 3), (2 4), (3 4). There are six.
(3) The 3-cycles are (1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (2 4 3). There are eight.
(4) The 4-cycles are (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2). There are six.
(5) There are no 5-cycles!
(6) We have found 20 permutations of 24 total permutations in S4. So there must be 4 we have not

listed. The identity e is one of these, but let’s say it is a 0-cycle. The permutations that are not
cycles are (1 2)(3 4) and (1 3)(2 4) and (1 4)(2 3).

(7) The order of the 2-cycles is 2, the order of the 3 cycles is 3, the order of the 4-cycles is 4. The
order of the four permutations that are products of disjoint transpositions is 2.

(8) An example of a cyclic subgroup of order 2 is 〈(1 2)〉 = {e, (1 2)}. An example of a cyclic
subgroup of order 3 is 〈(1 2 3)〉 = {e, (1 2 3), (1 3 2)}. An example of a cyclic subgroup of order
4 is 〈(1 2 3 4)〉 = {e, (1 2 3 4), (1 3)(2 4), (1 4 3 2)}.

(9) A subgroup isomorphic to the Klein 4 group is {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.
(10) The subgroup 〈(1 2 3), (2 3)〉 = {e, (1 2 3), (1 3 2), (2 3), (1 2), (1 3)}, which is S3. We can

get four different subgroups inside S4 that are isomorphic to S3, just by looking at the sets of
permutations that FIX one of the four elements. The one we just looked at fixes 4. But we could
have just as easily looked only at permutations that fix 1: these would be the permutations of the
set {2, 3, 4}, which is also S3. Likewise, the permutation group of {1, 3, 4} and the permutation
group of {1, 2, 4} are also subgroups of S3 isomorphic to S3.

C. EVEN AND ODD PERMUTATIONS. A permutation is odd if it is a composition of an odd number of
transposition, and even if it is a product of an even number of transpositions.

(1) Explain why a definition like this might be problematic. Problem G below justifies this definition.
(2) Write the permutation (123) as a product of transpositions. Is (123) even or odd ?
(3) Write the permutation (1234) as a product of transpositions. Is (1234) even or odd ?
(4) Write the σ = (12)(345) a product of transpositions in two different ways. Is σ even or odd ?
(5) Prove that every 3-cycle is an even permutation.

Solution.
(1) Note that the definition of even/odd permutation is problematic: how do we know it is well-

defined? That is, if Waleed writes out a certain permutation σ as a product of 17 transposition,
but Linh writes out the same permutation σ as a product of 22 transposition, is σ even or odd?
By problem G, this cannot happen.

(2) (1 2 3) = (1 2)(2 3), even.
(3) (1 2 3 4) = (1 2)(2 3)(3 4), odd.
(4) (1 2)(3 4 5) = (1 2)(3 4)(4 5) = (4 5)(1 2)(4 5)(3 4)(4 5). odd.
(5) The 3-cycle (i j k) = (i j)(j k) so it is even.



D. THE ALTERNATING GROUPS

(1) Prove that the subset of even permutations in Sn is a subgroup. This is the called the alternating
group An.

(2) List out the elements of A2. What group is this?
(3) List out the elements of A3. To what group is this isomorphic?
(4) How many elements in A4? Is A4 abelian? What about An?

Solution.
(1) To check that An is a subgroup, we need to prove that for arbitrary τ, σ ∈ An.

(a) τ ◦ σ ∈ An.
(b) σ−1 ∈ An.

For (1): Assume σ and τ are both even. we need to show σ ◦ τ is even. Write τ and σ as a
composition of (an even number of) transpositions. So the composition στ is the composition of
all these...still an even number of them.

For (2): Note that if σ is a product τ1 ◦ τ2 · · · τn, then the inverse of σ is τn ◦ τn−1 · · · τ2 ◦ τ1.
This has the same number of transpositions, so σ is even if and only if its inverse is even. That
is, if σ ∈ An, then so is σ−1. QED.

(2) We have A2 = {e}, the trivial group.
(3) We have A3 = {e, (1 2)(2 3), (1 3)(2 3)} = {e, (1 2 3), (1 3 2)}. This is a cyclic group of order

3.
(4) This is order 12, not abelian. In general, An has order n!/2 and is not abelian if n > 4.s

A4 = {e, (1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (2 4 3), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

E. THE SYMMETRIC GROUP S5
(1) Find one example of each type of element in S5 or explain why there is none:

(a) A 2-cycle
(b) A 3-cycle
(c) A 4-cycle
(d) A 5-cycle
(e) A 6-cycle
(f) A product of disjoint transpositions
(g) A product of 3-cycle and a disjoint 2-cycle.
(h) A product of 2 disjoint 3 cycles.

(2) For each example in (1), find the order of the element.
(3) What are all possible orders of elements in S5?
(4) What are all possible orders of cycle subgroups of S5.
(5) For each example in (1), write the element as a product of transpositions. Which are even and which

are odd?

Solution.
(1) (1 2), (1 2 3), (1 2 3 4), (1 2 3 4 5), No six cycles!, (1 2)(3 5), (1 2)(3 4 5), no triple products of

disjoint 2 cycles exist in S5....only 5 objects to permute.
(2) The orders are 2, 3, 4, 5, none, 2, 6.
(3) The orders above, and 1, are all possible orders because these exhaust all possible cycle-types of

permutations.
(4) There are cyclic subgroups of all the orders listed in (2), and the trivial subgroup {e} which is

cyclic of order 1.



(5) (1 2), (1 2 3) = (1 2)(2 3), (1 2 3 4) = (1 2)(2 3)(3 4), (1 2 3 4 5) = (1 2)(2 3)(3 4)(4 5), No six
cycles!, (1 2)(3 5), (1 2)(3 4 5) = (1 2)(3 4)(4 5). To determine even/odd just count the number
of transpositions in each.

F. Discuss with your workmates how one might prove Theorem 7.26.1

Solution. In S2, every element is a transposition (12) or a product of transpositions (12)(12) = e.
In S3, every element is a transposition, or a product of transpositions such as (12)(12) = e, or (123) =

(12)(23).
In S4, the previous cases handle every thing which is a 1-cycle, 2-cycle or 3-cycle. The remaining

elements are either products of two disjoint transpositions, such as (12)(34), in which case we’re done,
or four cycles such as (1234). The latter can be written (12)(23)(34).

In Sn, we write an arbitrary element as a product of cycles. Then, it comes down to writing each cycle
as a product of transpositions. But for example (i1i2i3 · · · it) = (i1i2)◦ (i2i3)◦ · · · (it−1it). So it is a clear
that this can be done.

Alternatively, we can proceed by induction on n. The base case n = 1 is trivial. Given a general

permutation σ =

(
1 2 · · · n
k1 k2 · · · kn

)
, note that (knn)σ fixes n, so can be considered as a permutation

of n− 1 elements. By the induction hypothesis, it is a product of transpositions. Then σ = (knn)(knn)σ
is a product of transpositions as well.

G. PERMUTATION MATRICES. We say that an n × n matrix is a permutation matrix if it has exactly one
1 in each row and each column, and the other entries 0. If σ ∈ Sn is a permutation, let Pσ be the n × n
permutation matrix with (σ(i), i) entry 1 for all i, and all other entries 0.

(1) Show that Pσei = eσ(i) for any permutation σ, where ej is the jth standard basis vector.
(2) Show that PσPτ = Pσ◦τ .
(3) Show that the set of permutation matrices is a subgroup of GLn(R) that is isomorphic to Sn.
(4) Show that the determinant of P(ij) is −1.
(5) Show that if σ is a product of an even number of transpositions, then the determimant of Pσ is 1, and

if σ is a product of an odd number of transpositions, then the determimant of Pσ is −1. Conclude
that the sign of a permutation is well-defined.

Solution.
(1) The product Pσei is the ith column of Pσ, which has a one in the σ(i) row ans zeroes elsewhere:

this is eσ(i).
(2) Since matrix multiplication corresponds to composition of linear transformations, we have

(PτPσ)ei = Pτeσ(i) = Pτ(σ(i)) for all i. Thus, (PτPσ)ei = Pτ◦σei for all i, so the matrices
PτPσ and Pτ◦σ must be equal.

(3) We see from the previous part that this subset is closed under composition. Since every σ ∈ Sn
has finite order, one of its positive powers is its inverse. It follows that the set of permutation
matrices is closed under inverses. The previous part also shows that the map sending σ to Pσ is
an isomorphism.

(4) Follows from Math 217.

1Hint: Imagine lining everyone in the class up in a straight line. How can we put the class in alphabetical order by a sequence
of swaps?



(5) This follows from the fact that det is a homomorphism. Since det is well-defined, a permu-
tation matrix can only be an even product of transpositions OR (exclusive) an odd product of
transpositions.


