DEFINITION: The symmetric group \mathcal{S}_{n} is the group of bijections from any set of n objects, which we usually call simply $\{1,2, \ldots, n\}$, to itself. An element of this group is called a permutation of $\{1,2, \ldots, n\}$. The group operation in \mathcal{S}_{n} is composition of mappings.

Permutation stack notation: The notation $\left(\begin{array}{cccc}1 & 2 & \cdots & n \\ k_{1} & k_{2} & \cdots & k_{n}\end{array}\right)$ denotes the permutation that sends i to k_{i} for each i.

Cycle notation: The notation ($a_{1} a_{2} \cdots a_{t}$) refers to the (special kind of!) permutation that sends a_{i} to a_{i+1} for $i<t$, a_{t} to a_{1}, and fixes any element other than the a_{i} 's. A permutation of this form is called a t-cycle. A 2 -cycle is also called a transposition.

Remember that a cycle is a function, so if we have cycles side-by-side, this refers to composition of functions, where the composition as usual goes from right to left.

THEOREM 7.24: Every permutation can be written as a product of disjoint cycles - cycles that all have no elements in common. Disjoint cycles commute.

THEOREM 7.26: Every permutation can be written as a product of transpositions, not necessarily disjoint.

A. Warm-up with elements of \mathcal{S}_{n}

(1) Write the permutation $(135)(27) \in \mathcal{S}_{7}$ in permutation stack notation.
(2) Write the permutation $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 6 & 1 & 2 & 4 & 7 & 5\end{array}\right) \in \mathcal{S}_{7}$ in cycle notation.
(3) If $\sigma=(123)(46)$ and $\tau=(23456)$ in \mathcal{S}_{7}, compute $\sigma \tau$; write your answer in stack notation. Now also write it as a product of disjoint cycles.
(4) With σ and τ as in (4), compute $\tau \sigma$. Is \mathcal{S}_{7} abelian?
(5) List all elements of \mathcal{S}_{3} in cycle notation. What is the order of each?
(6) What is the inverse of $\left(\begin{array}{ll}1 & 3\end{array}\right)$? What is the inverse of (1234) ? How about $(12345)^{-1}$?
B. The Symmetric group \mathcal{S}_{4}
(1) What is the order of \mathcal{S}_{4} ?
(2) List all 2 -cycles in \mathcal{S}_{4}. How many are there?
(3) List all 3 -cycles in \mathcal{S}_{4}. How many are there?
(4) List all 4 -cycles in \mathcal{S}_{4}. How many are there?
(5) List all 5-cycles in \mathcal{S}_{4}.
(6) How many permutations in \mathcal{S}_{4} are not cycles? Find them all.
(7) Find the order of each element in \mathcal{S}_{4}. Why are the orders the same for permutations with the same "cycle type"?
(8) Find cyclic subgroups of \mathcal{S}_{4} of orders 2,3 , and 4.
(9) Find a subgroup of \mathcal{S}_{4} isomorphic to the Klein 4-group. List out its elements.
(10) List out all elements in the subgroup $H=\langle(123),(23)\rangle$ of \mathcal{S}_{4} generated by (123) and (23). What familiar group is this isomorphic to? Can you find four different subgroups of \mathcal{S}_{4} isomorphic to \mathcal{S}_{3} ?
C. Even and Odd Permutations. A permutation is odd if it is a composition of an odd number of transposition, and even if it is a product of an even number of transpositions.
(1) Explain why a definition like this might be problematic. Problem G below justifies this definition.
(2) Write the permutation (123) as a product of transpositions. Is (123) even or odd?
(3) Write the permutation (1234) as a product of transpositions. Is (1234) even or odd ?
(4) Write the $\sigma=(12)(345)$ a product of transpositions in two different ways. Is σ even or odd?
(5) Prove that every 3-cycle is an even permutation.

D. The alternating Groups

(1) Prove that the subset of even permutations in S_{n} is a subgroup. This is the called the alternating $\operatorname{group} A_{n}$.
(2) List out the elements of A_{2}. What group is this?
(3) List out the elements of A_{3}. To what group is this isomorphic?
(4) How many elements in A_{4} ? Is A_{4} abelian? What about A_{n} ?

E. The Symmetric group \mathcal{S}_{5}

(1) Find one example of each type of element in S_{5} or explain why there is none:
(a) A 2-cycle
(b) A 3-cycle
(c) A 4-cycle
(d) A 5-cycle
(e) A 6-cycle
(f) A product of disjoint transpositions
(g) A product of 3-cycle and a disjoint 2-cycle.
(h) A product of 2 disjoint 3 cycles.
(2) For each example in (1), find the order of the element.
(3) What are all possible orders of elements in \mathcal{S}_{5} ?
(4) What are all possible orders of cycle subgroups of \mathcal{S}_{5}.
(5) For each example in (1), write the element as a product of transpositions. Which are even and which are odd?
F. Discuss with your workmates how one might prove Theorem 7.26. ${ }^{1}$
G. Permutation Matrices. We say that an $n \times n$ matrix is a permutation matrix if it has exactly one 1 in each row and each column, and the other entries 0 . If $\sigma \in \mathcal{S}_{n}$ is a permutation, let P_{σ} be the $n \times n$ permutation matrix with $(\sigma(i), i)$ entry 1 for all i, and all other entries 0 .
(1) Show that $P_{\sigma} e_{i}=e_{\sigma(i)}$ for any permutation σ, where e_{j} is the j th standard basis vector.
(2) Show that $P_{\sigma} P_{\tau}=P_{\sigma \circ \tau}$.
(3) Show that the set of permutation matrices is a subgroup of $G L_{n}(\mathbb{R})$ that is isomorphic to \mathcal{S}_{n}.
(4) Show that the determinant of $P_{(i j)}$ is -1 .
(5) Show that if σ is a product of an even number of transpositions, then the determimant of P_{σ} is 1 , and if σ is a product of an odd number of transpositions, then the determimant of P_{σ} is -1 . Conclude that the sign of a permutation is well-defined.

[^0]
[^0]: ${ }^{1}$ Hint: Imagine lining everyone in the class up in a straight line. How can we put the class in alphabetical order by a sequence of swaps?

