DEFINITION: The symmetric group S_n is the group of bijections from any set of n objects, which we usually call simply $\{1, 2, ..., n\}$, to itself. An element of this group is called a **permutation** of $\{1, 2, ..., n\}$. The group operation in S_n is *composition* of mappings.

PERMUTATION STACK NOTATION: The notation $\begin{pmatrix} 1 & 2 & \cdots & n \\ k_1 & k_2 & \cdots & k_n \end{pmatrix}$ denotes the permutation that sends *i* to k_i for each *i*.

CYCLE NOTATION: The notation $(a_1 a_2 \cdots a_t)$ refers to the (special kind of!) permutation that sends a_i to a_{i+1} for i < t, a_t to a_1 , and fixes any element other than the a_i 's. A permutation of this form is called a *t*-cycle. A 2-cycle is also called a **transposition**.

Remember that a cycle is a function, so if we have cycles side-by-side, this refers to composition of functions, where the composition as usual goes from right to left.

THEOREM 7.24: Every permutation can be written as a product of *disjoint cycles* — cycles that all have no elements in common. Disjoint cycles commute.

THEOREM 7.26: Every permutation can be written as a product of *transpositions*, not necessarily disjoint.

A. Warm-up with elements of \mathcal{S}_n

- (1) Write the permutation $(1\ 3\ 5)(2\ 7) \in S_7$ in permutation stack notation.
- (2) Write the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 6 & 1 & 2 & 4 & 7 & 5 \end{pmatrix} \in S_7$ in cycle notation.
- (3) If $\sigma = (1\ 2\ 3)(4\ 6)$ and $\tau = (2\ 3\ 4\ 5\ 6)$ in S_7 , compute $\sigma\tau$; write your answer in stack notation. Now also write it as a product of disjoint cycles.
- (4) With σ and τ as in (4), compute $\tau\sigma$. Is S_7 abelian?
- (5) List all elements of S_3 in cycle notation. What is the order of each?
- (6) What is the inverse of $(1\ 2\ 3)$? What is the inverse of $(1\ 2\ 3\ 4)$? How about $(1\ 2\ 3\ 4\ 5)^{-1}$?

B. The Symmetric group \mathcal{S}_4

- (1) What is the order of S_4 ?
- (2) List all 2-cycles in S_4 . How many are there?
- (3) List all 3-cycles in S_4 . How many are there?
- (4) List all 4-cycles in S_4 . How many are there?
- (5) List all 5-cycles in S_4 .
- (6) How many permutations in S_4 are not cycles? Find them all.
- (7) Find the order of each element in S_4 . Why are the orders the same for permutations with the same "cycle type"?
- (8) Find cyclic subgroups of S_4 of orders 2, 3, and 4.
- (9) Find a subgroup of S_4 isomorphic to the Klein 4-group. List out its elements.
- (10) List out all elements in the subgroup $H = \langle (1 \ 2 \ 3), (2 \ 3) \rangle$ of S_4 generated by $(1 \ 2 \ 3)$ and $(2 \ 3)$. What familiar group is this isomorphic to? Can you find four different subgroups of S_4 isomorphic to S_3 ?

C. EVEN AND ODD PERMUTATIONS. A permutation is **odd** if it is a composition of an odd number of transposition, and **even** if it is a product of an even number of transpositions.

- (1) Explain why a definition like this might be problematic. Problem G below justifies this definition.
- (2) Write the permutation (123) as a product of transpositions. Is (123) even or odd ?

- (3) Write the permutation (1234) as a product of transpositions. Is (1234) even or odd?
- (4) Write the $\sigma = (12)(345)$ a product of transpositions in two different ways. Is σ even or odd ?
- (5) Prove that every 3-cycle is an even permutation.

D. THE ALTERNATING GROUPS

- (1) Prove that the subset of even permutations in S_n is a subgroup. This is the called the **alternating** group A_n .
- (2) List out the elements of A_2 . What group is this?
- (3) List out the elements of A_3 . To what group is this isomorphic?
- (4) How many elements in A_4 ? Is A_4 abelian? What about A_n ?
- E. The Symmetric group \mathcal{S}_5
 - (1) Find one example of each type of element in S_5 or explain why there is none:
 - (a) A 2-cycle
 - (b) A 3-cycle
 - (c) A 4-cycle
 - (d) A 5-cycle
 - (e) A 6-cycle
 - (f) A product of disjoint transpositions
 - (g) A product of 3-cycle and a disjoint 2-cycle.
 - (h) A product of 2 disjoint 3 cycles.
 - (2) For each example in (1), find the order of the element.
 - (3) What are all possible orders of elements in S_5 ?
 - (4) What are all possible orders of cycle subgroups of S_5 .
 - (5) For each example in (1), write the element as a product of transpositions. Which are even and which are odd?
- F. Discuss with your workmates how one might prove Theorem 7.26.¹

G. PERMUTATION MATRICES. We say that an $n \times n$ matrix is a **permutation matrix** if it has exactly one 1 in each row and each column, and the other entries 0. If $\sigma \in S_n$ is a permutation, let P_{σ} be the $n \times n$ permutation matrix with $(\sigma(i), i)$ entry 1 for all *i*, and all other entries 0.

- (1) Show that $P_{\sigma}e_i = e_{\sigma(i)}$ for any permutation σ , where e_j is the *j*th standard basis vector.
- (2) Show that $P_{\sigma}P_{\tau} = P_{\sigma\circ\tau}$.
- (3) Show that the set of permutation matrices is a subgroup of $GL_n(\mathbb{R})$ that is isomorphic to \mathcal{S}_n .
- (4) Show that the determinant of $P_{(ij)}$ is -1.
- (5) Show that if σ is a product of an even number of transpositions, then the determinant of P_{σ} is 1, and if σ is a product of an odd number of transpositions, then the determinant of P_{σ} is -1. Conclude that the sign of a permutation is well-defined.

¹Hint: Imagine lining everyone in the class up in a straight line. How can we put the class in alphabetical order by a sequence of swaps?