## Math 412. Adventure sheet on Ring Basics

DEFINITION: A ring ${ }^{1}$ is a nonempty set $R$ with two binary operations, denoted " + " and " $\times$," such that

-     + and $\times$ are both associative,
-     + is commutative,
-     + has a identity, which we denote $0_{R}$;
- Every element of $R$ has an inverse for the operation + ; the inverse of $r$ is denoted $-r$.
- $\times$ has an identity, denoted $1_{R}$;
- The two operations are related by the distributive properties: $a \times(b+c)=a \times b+a \times c$ and $(a+b) \times c=a \times c+b \times c$ for all $a, b, c \in R$.
If we want to specify the operations of the ring, we may write $(R,+, \times)$.
A. Examples of Rings. Which of the following have a natural ring structure? Describe the addition, multiplication, and identity elements.
(1) The set of polynomials $\mathbb{R}[x]$ with coefficients in $\mathbb{R}$.
(2) The set $\mathcal{P}_{d}$ of polynomials in $\mathbb{R}[x]$ of degree at most $d$.
(3) The set $M_{2}(\mathbb{R})$ of $2 \times 2$ matrices with coefficients in $\mathbb{R}$.
(4) The Gaussian integers $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$.
(5) The set $\{$ even, odd $\}$.
(6) The set $\mathbb{Z}_{N}$ for any positive integer $N$.
(7) The set of all $2 \times 3$ matrices with coefficients in $\mathbb{Z}$.
(8) The set of all $2 \times 2$ matrices with coefficients in $\mathbb{R}$ and non-zero determinant.
(9) The set $\mathcal{C}(\mathbb{R})$ of continuous functions from $\mathbb{R}$ to itself.
(10) The set of increasing functions from $\mathbb{R}$ to iself.
B. Easy Proofs: Let $\square$ be an operation on a set $T$.
(1) Prove that $\square$ has at most one identity. Can a ring $R$ have more than one $0_{R}$ ? What about more than one $1_{R}$ ? Explain.
(2) Suppose $\square$ is associative. Prove that the $\square$-inverse of any element $x \in T$, if it exists, is unique. Can elements of rings have more than one additive/multiplicative inverses?
(3) Prove that in any ring $R, 0_{R} \times x=0_{R}$ for all $x \in R$. ${ }^{2}$
(4) TRUE OR FALSE: In any ring $R,(a+b)^{2}=a^{2}+2 a b+b^{2}$ for all $a, b \in R$.
C. Product Rings. Let $R$ and $S$ be rings. ${ }^{3}$ Let $R \times S$ be the set of ordered pairs $\{(r, s) \mid r \in$ $R, s \in S\}$.
(1) Define an operation called + on $R \times S$ by $\left(r_{1}, s_{1}\right)+\left(r_{2}, s_{2}\right)=\left(r_{1}+r_{2}, s_{1}+s_{2}\right)$. The three different plus signs in the preceding sentence have three different meanings; explain.
(2) Is this operation on $R \times S$ is associative and commutative? Does it have an identity? Does every $(r, s) \in R \times S$ have an inverse under + ?
(3) Define a natural multiplication on $R \times S$ so that, together with the addition defined in (1), the set $R \times S$ becomes a ring.
(4) How many elements are in the ring $\mathbb{Z}_{N} \times \mathbb{Z}_{M}$ ?

[^0](5) Make tables for the addition and multiplication in $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Identify the multiplicative and additive identity elements. Which elements have a multiplicative inverse?
D. Subrings. A nonempty subset $S$ of a ring $R$ is a subring of $R$ if $S$ is a ring with the same operations,$+ \times$ restricted to $S$.
(1) If $S \subseteq R$ is nonempty and $R$ is a ring, explain why it suffices to show that

- $0_{R}, 1_{R} \in S$,
- $S$ is closed under addition: $s_{1}, s_{2} \in S \Rightarrow s_{1}+s_{2} \in S$,
- $S$ is closed under additive inverses: $s_{1} \in S \Rightarrow-s_{1} \in S$, and
- $S$ is closed under multipication: $s_{1}, s_{2} \in S \Rightarrow s_{1} s_{2} \in S$,
to show that $S$ is a subring of $R$.
(2) Find subrings of each of $\mathbb{Q}, \mathbb{R}[x]$, and $\operatorname{Fun}(\mathbb{R}, \mathbb{R}) .^{4}$
(3) Every ring always contains at least two "trivial" subrings. Explain.
E. IsOMORPHISM. Two rings $R$ and $S$ are isomorphic if they are "the same after relabelling." More precisely, two rings are isomorphic if there is a bijection (called an isomorphism) between them that preserves addition and multiplication. We write $R \cong S$.
(1) Write out the + and $\times$ tables for $\mathbb{Z}_{4}$. There is a way to relabel the elements of $\mathbb{Z}_{4}$ with the names $a, b, c$, and $d$, so that they each become one of operations $\boldsymbol{\&}, \diamond, \diamond$, and from below. Explain.
(2) Now use the card suits to put a ring structure on the set $S=\{a, b, c, d\}$. Find the additive and multiplicative identities. Explain why $S$ is isomorphic to $\mathbb{Z}_{4}$.
(3) Prove or disprove: $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is isomorphic to $\mathbb{Z}_{4}$.
(4) Prove or disprove: Isomorphism is an equivalence relation on the set of all rings. This means that it is reflexive ( $R \cong S$ ), symmetric ( $R \cong S$ implies $S \cong R$ ) and transitive ( $R \cong S$ and $S \cong T$ implies $S \cong T$ ).

| \& | a | b | c | d |
| :---: | :---: | :---: | :---: | :---: |
| a | a | b | c | d |
| b | b | b | c | d |
| c | c | c | c | d |
| d | d | d | d | d |


| $\diamond$ | a | b | c | d |
| :---: | :---: | :---: | :---: | :---: |
| a | a | d | c | b |
| b | b | a | d | c |
| c | c | b | a | d |
| d | d | c | b | a |


| $\Gamma$ | a | b | c | d |
| :---: | :---: | :---: | :---: | :---: |
| a | a | a | a | a |
| b | a | b | c | d |
| c | a | c | a | c |
| d | a | d | c | b |


| $\boldsymbol{p}$ | a | b | c | d |
| :---: | :---: | :---: | :---: | :---: |
| a | a | b | c | d |
| b | b | c | d | a |
| c | c | d | a | b |
| d | d | a | b | c |

[^1]
[^0]:    ${ }^{1}$ WARNING: Our definition requires that a ring have a multiplicative identity. The is different from the book's.
    ${ }^{2}$ Hint: Use the distributive law with lots of 0's.
    ${ }^{3}$ We always mean "ring with identity" when we say "ring;" this differs from the book's convention

[^1]:    ${ }^{4}$ The set of all functions from $\mathbb{R}$ to itself with the "pointwise" operations $(f+g)(x)=f(x)+g(x)$ and $(f g)(x)=f(x) g(x)$.

