Math 412. Adventure sheet on Ring Basics

DEFINITION: A ring¹ is a nonempty set R with two binary operations, denoted "+" and " \times ," such that

- + and \times are both associative,
- \bullet + is commutative,
- + has a identity, which we denote 0_R ;
- Every element of R has an inverse for the operation +; the inverse of r is denoted -r.
- \times has an identity, denoted 1_R ;
- The two operations are related by the *distributive properties*: $a \times (b+c) = a \times b + a \times c$ and $(a + b) \times c = a \times c + b \times c$ for all $a, b, c \in R$.

If we want to specify the operations of the ring, we may write $(R, +, \times)$.

A. EXAMPLES OF RINGS. Which of the following have a natural ring structure? Describe the addition, multiplication, and identity elements.

- (1) The set of polynomials $\mathbb{R}[x]$ with coefficients in \mathbb{R} .
- (2) The set \mathcal{P}_d of polynomials in $\mathbb{R}[x]$ of degree at most d.
- (3) The set $M_2(\mathbb{R})$ of 2×2 matrices with coefficients in \mathbb{R} .
- (4) The Gaussian integers $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}.$
- (5) The set $\{even, odd\}$.
- (6) The set \mathbb{Z}_N for any positive integer N.
- (7) The set of all 2×3 matrices with coefficients in \mathbb{Z} .
- (8) The set of all 2×2 matrices with coefficients in \mathbb{R} and non-zero determinant.
- (9) The set $\mathcal{C}(\mathbb{R})$ of continuous functions from \mathbb{R} to itself.
- (10) The set of increasing functions from \mathbb{R} to iself.

B. EASY PROOFS: Let \Box be an operation on a set T.

- (1) Prove that \Box has at most one identity. Can a ring R have more than one 0_R ? What about more than one 1_R ? Explain.
- (2) Suppose \Box is associative. Prove that the \Box -inverse of any element $x \in T$, if it exists, is unique. Can elements of rings have more than one additive/multiplicative inverses?
- (3) Prove that in any ring R, $0_R \times x = 0_R$ for all $x \in R$.² (4) TRUE OR FALSE: In any ring R, $(a + b)^2 = a^2 + 2ab + b^2$ for all $a, b \in R$.

C. PRODUCT RINGS. Let R and S be rings.³ Let $R \times S$ be the set of ordered pairs $\{(r, s) \mid r \in$ $R, s \in S$.

- (1) Define an operation called + on $R \times S$ by $(r_1, s_1) + (r_2, s_2) = (r_1 + r_2, s_1 + s_2)$. The three different plus signs in the preceding sentence have three different meanings; explain.
- (2) Is this operation on $R \times S$ is associative and commutative? Does it have an identity? Does every $(r, s) \in R \times S$ have an inverse under +?
- (3) Define a natural multiplication on $R \times S$ so that, together with the addition defined in (1), the set $R \times S$ becomes a ring.
- (4) How many elements are in the ring $\mathbb{Z}_N \times \mathbb{Z}_M$?

¹WARNING: Our definition requires that a ring have a multiplicative identity. The is different from the book's. ²Hint: Use the distributive law with lots of 0's.

³We always mean "ring with identity" when we say "ring;" this differs from the book's convention

(5) Make tables for the addition and multiplication in $\mathbb{Z}_2 \times \mathbb{Z}_2$. Identify the multiplicative and additive identity elements. Which elements have a multiplicative inverse?

D. SUBRINGS. A nonempty subset S of a ring R is a **subring** of R if S is a ring with the same operations $+, \times$ restricted to S.

- (1) If $S \subseteq R$ is nonempty and R is a ring, explain why it suffices to show that
 - $0_R, 1_R \in S$,
 - S is closed under addition: $s_1, s_2 \in S \Rightarrow s_1 + s_2 \in S$,
 - S is closed under additive inverses: $s_1 \in S \Rightarrow -s_1 \in S$, and
 - S is closed under multiplication: $s_1, s_2 \in S \Rightarrow s_1 s_2 \in S$,

to show that S is a subring of R.

- (2) Find subrings of each of \mathbb{Q} , $\mathbb{R}[x]$, and $\operatorname{Fun}(\mathbb{R}, \mathbb{R})$.⁴
- (3) Every ring always contains at least two "trivial" subrings. Explain.

E. ISOMORPHISM. Two rings R and S are **isomorphic** if they are "the same after relabelling." More precisely, two rings are **isomorphic** if there is a **bijection** (called an **isomorphism**) between them that preserves addition and multiplication. We write $R \cong S$.

- Write out the + and × tables for Z₄. There is a way to relabel the elements of Z₄ with the names a, b, c, and d, so that they each become one of operations ♣, ◊, ♡, and ♠ from below. Explain.
- (2) Now use the card suits to put a ring structure on the set $S = \{a, b, c, d\}$. Find the additive and multiplicative identities. Explain why S is isomorphic to \mathbb{Z}_4 .
- (3) Prove or disprove: $\mathbb{Z}_2 \times \mathbb{Z}_2$ is isomorphic to \mathbb{Z}_4 .

(4) Prove or disprove: Isomorphism is an equivalence relation on the set of all rings. This means that it is reflexive (R ≈ S), symmetric (R ≈ S implies S ≈ R) and transitive (R ≈ S and S ≈ T implies S ≈ T).

+	a	b	c	d	\diamond	a	b	c	d	\heartsuit	a	b	c	d		a	b	c	d
a	a	b	c	d	a	a	d	c	b	a	a	a	a	a	a	a	b	c	d
b	b	b	c	d	b	b	a	d	c	b	a	b	с	d	b	b	c	d	a
	c					1			d	c	a	c	a	c	I	c			
d	d	d	d	d	d	d	c	b	a	d	a	d	c	b	d	d	a	b	C

⁴The set of all functions from \mathbb{R} to itself with the "pointwise" operations (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x).