
Math 412. Adventure sheet on quotient rings

DEFINITION: Let I be an ideal of a ring R. Consider arbitrary x, y ∈ R. We say that x is
congruent to y modulo I if x− y ∈ I .

DEFINITION: The congruence class of y modulo I is the set {y+z | z ∈ I} of all elements
of R congruent to y modulo I , which we by y + I .

The set of all congruence classes of R modulo I is denoted R/I .
CAUTION: The elements of R/I are sets.

DEFINITION: Let I be an ideal of a ring R. The Quotient Ring of R by I is the set R/I of
all congruence classes modulo I in R, together with binary operations + and · defined by

(x+ I) + (y + I) := (x+ y) + I (x+ I) · (y + I) := (x · y) + I.

A. IDEALS IN SOME FAMILIAR RINGS. It turns out that we can classify ALL ideals in some
special rings!

(1) Let F be a field. Show that the only two ideals in F are and {0}.
(2) Let I be an ideal in Z, and suppose that I ∕= {0}. Prove that I = (c), where c is the

smallest positive integer in I . Conclude that every ideal in Z is a principal ideal.
(3) Let F be a field, and R = F[x]. Let I be an ideal in R, and suppose that I ∕= {0}. Prove

that I = (f(x)), where f(x) is the monic polynomial of smallest degree in I . Conclude
that every ideal in R is a principal ideal.

(4) Is every ideal in every ring a principal ideal?

Solution.
(1) Let I ∕= {0} be an ideal in F. There exists some nonzero c ∈ I , and since F is a

field, c is invertible. Then 1 = c−1c ∈ I , and that implies I = F.
(2) Since I ∕= {0}, there exists n > 0 in I . Consider all the elements n in I that are

strictly positive, meaning n > 0. Every non-empty set of positive integers has a
minimum element, so let n the minimum positive element in I . Given any other
nonzero element m ∈ I , either m or −m is positive, so we can assume without loss
of generality that m > 0. Notice that (n,m) = un + vm ∈ I for some u, v ∈ Z. If
n ∤ m, then 0 < (n,m) < n, but this contradicts our assumption on n. We conclude
that n|m and m ∈ (n), so I = (n).

B. THE QUOTIENT RING R/I . Fix any ring R and any ideal I ⊆ R.
(1) Explain what needs to be checked in order to verify that the addition and multiplication

defined above on the set R/I are well-defined. Now check it for at least one of the
operations.

(2) Explain briefly why the ring axioms (for example, associativity) for each operation on
R/I follow easily from those for R.

(3) What are the additive and multiplicative identity elements in R/I?
(4) What is the additive inverse of y + I in R/I?
(5) Explain why R/I is commutative whenever R is commutative.
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(6) Prove that the canonical map R → R/I sending r 󰀁→ r + I is a surjective homomor-
phism. Find its kernel.

(7) Consider the ring R = Z and the ideal I = (n). What is the quotient ring R/I?

Solution.
(1) Check that given any f, g, f ′, g′ ∈ R, if f ≡ f ′ and g ≡ g′, then f + g ≡ f ′ + g′

and fg ≡ f ′g′.
(2) Whatever the statement, we can use the definitions of the operations in R/I to con-

vert the statement we need to prove into a statement in R: for example, to prove
associativity of the addition, we note that

((f + I) + (g + I)) + (h+ I) = ((f + g) + h) + I,

use that the sum is associate in R, and then finally use the definition of addition in
R/I again to rewrite this as (f + I) + ((g + I) + (h+ I)).

(3) 0 + I and 1 + I .
(4) −y + I .
(5) The multiplication operation in R/I is induced by the multiplication in R. Given

any f + I, g + I ∈ R/I ,

(f + I) · (g + I) = fg + I = gf + I = (g + I) · (f + I).

(6) It’s clear this is a surjective map, so all we need to check is that it is indeed a
homomorphism. Clearly, 1 󰀁→ 1 + I . The remaining properties follow by definition
of the operations on R:

(f + I) + (g + I) = ((f + g) + I) and (f + I) · (g + I) = ((f · g) + I) .

The kernel of the canonical homomorphism is I .
(7) Our old friend Zn.

C. Let R = Z6. Consider the subset I = {[0]6, [2]6, [4]6}.
(1) Prove that I is an ideal of Z6.
(2) List out all elements of Z6 in the congruence classes of [0]6, [2]6, and [1]6.
(3) Write out the subset [0]6 + I of Z6 in set notation. Ditto for [1]6 + I .
(4) Remember that the elements of R/I are subsets of the ring R. The ring Z6/I has two

elements, both are subsets of Z6. What are these two elements in this case? What is
the standard “quotient ring” notation for these elements of Z6/I? What is the simplest
possible notation for these two elements of Z6/I , allowing “abuses” of notation?

(5) Prove that Z6/I ∼= Z2 by describing an explicit isomorphism. Think about how the cor-
responding elements of Z2 and Z6/I under the isomorphism are “the same” or different.

Solution.
(1) This is a non-empty subset of Z6. It’s closed for additive inverses because −[2]6 =

[4]6, closed for addition because [2] + [2] = [4], [2] + [4] = [0] and [4] + [4] = [2],
and closed for multiplication by any elements because as a subset of Z, the union of
all these classes corresponds precisely to all the even integers.

(2) [0]6 + I = [2]6 + I = {[0]6, [2]6, [4]6} and [1]6 + I = [2]6 + I = {[1]6, [3]6, [5]6}.
There are only two elements in Z6/I .

(3) Same answer as the previous question.
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(4) The two elements we already described. We could simplify our notation and writing
them as just 0 + I and 1 + I , or even just 0 and 1.

(5) Check that the map [0]6 + I 󰀁→ [0]2 and [1]6 + I 󰀁→ [1]2 is a ring homomorphism.
This is also easily a bijection.

D. QUOTIENTS OF POLYNOMIAL RINGS.
(1) Let F be a field, and R = F[x]. Let I = (f(x)) = {g(x)f(x) | g(x) ∈ R} be an ideal.

Show that every element h(x) + I ∈ R/I contains exactly one polynomial t(x) such
that t(x) = 0 or deg(t(x)) < deg(f(x)).

(2) How many elements are in Z2[x]/(x
2 + x+ 1)?

(3) Write out addition and multiplication tables for the quotient ring in the previous part. Is
it a domain? Is it a field?

(4) Prove, in general, that if F is a field, R = F[x], and f(x) is irreducible, then R/(f(x))
is a field.

Solution.
(1) Notice that there is only one such polynomial in I: 0. Given two such polynomials

t(x), u(x), t(x)−u(x) is also such a polynomial. Therefore, if t(x) ≡ u(x) modulo
I , that means that t(x)− u(x) = 0. This shows that each polynomial t(x) such that
t(x) = 0 or deg(t(x)) < deg(f(x)) determines a different class modulo I . Now it
remains to check that these are all the equivalence classes. But given any polynomial
h(x), if r(x) is the remainder when we divide h(x) by f(x), then h(x) ≡ r(x) and
r(x) = 0 or deg(r(x)) < deg(f(x)).

(2) There is a class for each polynomial of degree strictly less than 2, and there are 4
such polynomials: 0, 1, x, x+ 1.

(3) Not a domain nor a field.

+ 0 1 x x+ 1
0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 x

· 0 1 x x+ 1
0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 x

x+ 1 0 x+ 1 x 1

(4) Following what we did for Z, we can show that the greatest common divisor between
two elements f and g in F[x] can be obtained from a factorization into irreducibles:
if

f = uf1 · · · fn and g = vg1 · · · gm
for monic irreducible polynomials fj , gi and units u, v, then the greatest common
divisor of f and g is simply the product of all the common irreducible factors,
counting minimum common multiplicity. Consider any g ∈ F[x], and suppose
that g = ug1 · · · gn is a factorization into monic irreducibles with u a unit. If
g + (f) ∕= 0 + (f), then f ∤ g, and thus f ∤ gi for all i. Then the greatest com-
mon divisor of f and g is 1, and pf + qg = 1 for some polynomials p and q. Then
q + I is the multiplicative inverse of g + I in R/I .

E. IDEALS IN QUOTIENT RINGS. The ideals in R/I are in one-to-one correspondence with the
ideals in R that contain I .



4

(1) Suppose that J ⊇ I is an ideal in R. Show the image of J by the canonical homomor-
phism π : R −→ R/I is an ideal in R/I .

(2) Consider any ideal a in R/I . Show that the set

J = π−1(a) = {r ∈ R : r + I ∈ a}
is an ideal in R that contains I .

(3) What are the ideals in Z42? What ideals in Z do they correspond to?

Solution.
(1) Since 0 ∈ J , 0 + I ∈ π(J). Given any r, s ∈ J , and any t ∈ R,

π(r) + π(s) = π(r + s) ∈ π(J),−π(r) = π(−r) ∈ π(J),

and
(t+R)π(a) = π(t)π(a) = π(ta) ∈ π(J).

Notice that we used here the fact that π is surjective.
(2) Clearly, 0 ∈ J . If r, s ∈ J and t ∈ R, then

(r+s)+I = (r+I)+(s+I) ∈ a,−r+I = −(r+I) ∈ a, and ts+I = (t+I)(s+I) ∈ a,

since a is an ideal, and thus r + s, ts ∈ J . Therefore, J is an ideal. Moreover, if
r ∈ I , then r + I = 0 + I ∈ a, so I ⊆ J .

(3) Since 42 = 2 ∗ 3 ∗ 7 and (n) ⊇ (42) if and only if n|42, there are three nontrivial
ideals in Z42: ([2]42), ([3]42), and ([7]42).


