
Math 412. Adventure sheet on Quotient Groups

Fix an arbitrary group (G, ◦).
DEFINITION: A subgroup N of G is normal if for all g ∈ G, the left and right N -cosets gN and Ng
are the same subsets of G.

NOTATION: If H ⊆ G is any subgroup, then G/H denotes the set of left cosets of H in G. Its
elements are sets denoted gH where g ∈ G. The cardinality of G/H is called the index of H in G.

DEFINITION/THEOREM 8.13: Let N be a normal subgroup of G. Then there is a well-defined binary
operation on the set G/N defined as follows:

G/N ×G/N → G/N g1N 󰂏 g2N = (g1 ◦ g2)N
making G/N into a group. We call this the quotient group “G modulo N”.

A. WARMUP: Define the sign map:

Sn → {±1} σ 󰀁→ 1 if σ is even; σ 󰀁→ −1 if σ is odd.

(1) Prove that sign map is a group homomorphism.
(2) Use the sign map to give a different proof that An is a normal subgroup of Sn for all n.
(3) Describe the An-cosets of Sn. Make a table to describe the quotient group structure Sn/An. What

is the identity element?

Solution.
(1) By definition, if τ is a transposition then τ 󰀁→ −1. Given any element σ ∈ Sn, if we write

σ as a product of transpositions, say σ = τ1 . . . τk, then σ 󰀁→ (−1)n. Now if σ′ ∈ Sn is a
product of r transpositions, σσ′ is a product of k + r transpositions, and

σσ′ 󰀁→ (−1)k+r = (−1)k(−1)r.

(2) By definition, An is the kernel of the sign map, and we have shown that the kernel of a group
homomorphism must be a normal subgroup.

(3) There are two cosets: An and Sn \ An, the last one being the set of odd permutations. The
identity element in Sn/An is the coset An, and the group Sn/An is isomorphic to Z2.

B. OPERATIONS ON COSETS: Let (G, ◦) be a group and let N ⊆ G be a normal subgroup.
(1) Take arbitrary ng ∈ Ng. Prove that there exists n′ ∈ N such that ng = gn′.
(2) Take any x ∈ g1N and any y ∈ g2N . Prove that xy ∈ g1g2N .
(3) Define a binary operation 󰂏 on the set G/N of left N -cosets as follows:

G/N ×G/N → G/N g1N 󰂏 g2N = (g1 ◦ g2)N.

Think through the meaning: the elements of G/N are sets and the operation 󰂏 combines two of
these sets into a third set: how? Explain why the binary operation 󰂏 is well-defined. Where are
you using normality of N?

(4) Prove that the operation 󰂏 in (4) is associative.
(5) Prove that N is an identity for the operation 󰂏 in (4).
(6) Prove that every coset gN ∈ G/N has an inverse under the operation 󰂏 in (4).
(7) Conclude that (G/N, 󰂏) is a group.
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(8) Does the set of right cosets also have a natural group structure? What is it? Does it differ from
G/N?

Solution.
(1) Since N is normal, Ng = gN . Given ng ∈ Ng = gN , there exists n′ ∈ N such that

ng = gn′.
(2) There exist some n1, n2 ∈ N such that x = g1n1 and y = g2n2. Then

xy = g1n1g2n2 = g1(n1g2)n2.

We assumed that N is normal, so n1g2 ∈ Ng2 = g2N . Let n ∈ N be such that n1g2 = g2n.
Then

xy = g1(n1g2)n2 = g1(g2n)n1 = (g1g2)(n1n) ∈ (g1g2)N.

(3) The problem could be that if we can write a coset in two different ways, say g1N = h1N ,
then when we multiply by another coset, say g2N , then there could be two different possible
answers for (g1N) · (g2N):
• One possible answer is (g1g2)N ;
• another possible answer is (h1g2)N .

We need to check that we really only get one answer for each possible product; so we need to
check that (g1g2)N = (h1g2)N . This is what we just did in the previous question!
A similar problem arises with the second factor. So to check that our operation really is well-
defined, we need to take any g1, h1, g2, h2 such that g1N = h1N and g2N = h2N , and verify
that (g1g2)N = (h1h2)N . Again, this is what the previous question says. This is equivalent
to proving that (g1g2)(h1h2)

−1 ∈ N .
(4) Now that we know the operation is well-defined, it is easy to check that properties of the

operation on G pass to G/H . In particular, 󰂏 is associative because the operation on G also
is associative:

(gN 󰂏 hN) 󰂏 kN = (gh)N 󰂏 kN = ((gh)k)N = (g(hk))N = gN 󰂏 (hk)N = gN 󰂏 (hN 󰂏 kN).

(5) Given any g ∈ G,

gN 󰂏 eN = (ge)N = gN = (eg)N = eN 󰂏 gN.

(6) Let g ∈ G. Then

g−1N 󰂏 gN = (g−1g)N = N = (gg−1)N = gN 󰂏 g−1N.

(7) We have shown that this is a set with an associative operation for which there is an identity
and every element has an inverse, so this is a group.

C. EASY EXAMPLES OF QUOTIENT GROUPS:
(1) In (Z,+), explain why nZ is a normal subgroup and describe the corresponding quotient group.
(2) For any group G, explain why G is a normal subgroup of itself. What is the quotient G/G?
(3) For any group G, explain why {e} is a normal subgroup of G. What is the quotient G/{e}?

Solution.
(1) We have shown that every subgroup of an abelian group is normal, so nZ is a normal subgroup

of Z. The quotient group is the group (Zn,+).
(2) For every g ∈ G, gGg−1 ⊆ G, because G is closed for products. This means that G is a

normal subgroup of G. The quotient G/G is the trivial group (with one element).



(3) For every g ∈ G, g{e} = {g} = {e}g, so the trivial subgroup is normal. The quotient group
G/{e} is isomorphic to G.



D. ANOTHER EXAMPLE. Let G = Z×
25. Let N be the subgroup generated by [7].

(1) Give a one-line proof that N is normal.
(2) List out the elements of G and of N . Compute the order of both. Compute the index of N in G.
(3) List out the elements of G/N ; don’t forget that each one is a coset (in particular, a set whose

elements you should list).
(4) Give each coset in G/N a reasonable name. Now make a multiplication table for the group G/N ,

using these names. Is G/N abelian?

Solution.
(1) G is abelian, so N is a normal subgroup.
(2) G = {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24} and N = {1, 7, 24, 18}.

So |Z×
25| = 52 − 25

5
= 20 and |〈7〉| = 4. By Lagrange’s Theorem [Z×

25 : 〈7〉] = 20
4
= 5.

(3) N = {1, 7, 24, 18}, 2N = {2, 14, 23, 11}, 3N = {3, 14, 22, 4}, 6N = {6, 17, 19, 8}, 9N =
{9, 13, 16, 12}.

(4) Actually, this is just Z5: it is a group of order 5. So yes, this is an abelian group, and writing
a multiplication table is quite easy. What if we wanted to give an explicit isomorphism to Z5?
Our isomorphism must send N to [0]5. Now which element gets sent to [1]5 does not matter:
every element in Z5 is a generator! But once we pick what element goes to [1]5, the others
are completely determined. For example, we can have 2N 󰀁→ [1]5, 3N 󰀁→ [2]5, 6N 󰀁→ [4]5
and 9N 󰀁→ [3]5.

E. THE CANONICAL QUOTIENT MAP: Prove that the map

G → G/N g 󰀁→ gN

is a group homomorphism. What is its kernel?

Solution. Write φ for the canonical map. Given g, h ∈ G, φ(gh) = (gh)N = gN 󰂏 hN = φ(g)φ(h).
The kernel of the canonical map is N . This shows that given any normal subgroup N , there is always
a group homomorphism with kernel N .

F. INDEX TWO. Suppose that H is an index two subgroup of G. Last time, we proved the

THEOREM: Every subgroup of index two in G is normal.

(1) Describe the quotient group G/H . What are its elements? What is the table?
(2) Find an example of an index two subgroup of Dn and describe its two cosets explicitly. Make a

table for this group and describe the canonical quotient map G → G/H explicitly.

Solution.
(1) This is a group of order 2, so isomorphic to Z2. The elements are H and G \H .
(2) The group of rotations! It has n elements, the n rotations.

G. PRODUCTS AND QUOTIENT GROUPS: Let K and H be arbitrary groups and let G = K ×H .



(1) Find a natural homomorphism G → H whose kernel K ′ is K × eH .
(2) Prove that K ′ is a normal subgroup of G, whose cosets are all of the form K × h for h ∈ H .
(3) Prove that G/K ′ is isomorphic to H .

Solution.
(1) Consider the projection onto the second component, meaning the map φ : G −→ H given by

φ(k, h) = h. Then (k, h) ∈ K ′ if and only if h = eH , or equivalently, (k, h) ∈ K × eH .
(2) Since K ′ is the kernel of of a group homomorphism, K ′ is normal. Now note that for each

h ∈ H ,
K × h = {(k, h) : k ∈ K} = (K × eH) (eG, h).

On the other hand, given any K-coset K ′(k, h), (eG, h) = (k−1, eH)(k, h) ∈ K ′(k, h). So
every coset is of the form K × h for some h. Finally, if h, h′ ∈ H , then K × h = K × h′ if
and only if (e, h′)(e, h−1) ∈ K × {e}, or equivalently, h′h−1 = e.

H. What goes wrong if we try to define a group structure on the set of right cosets G/H where H is a
non-normal subgroup of G? Try illustrating the problem with the non-normal subgroup 〈(1 2)〉 in S3.

Solution.

I. THE FIRST ISOMORPHISM THEOREM. Conjecture and prove first isomorphism theorem for groups.

Solution. The First Isomorphism Theorem says the following:
Given a surjective group homomorphism φ : G −→ H , H ∼= G/ ker(φ).

Here is a proof:
Consider the map ψ : G/ ker(φ) −→ H given by φ(ker(φ)g) = φ(g).
This map ψ is well-defined: given g, h ∈ G such that ker(φ)g = ker(φ)h, by definition we have
gh−1 ∈ ker(φ), so φ(gh−1) = e, and thus φ(g) = φ(h).
Moreover, this map ψ is a group homomorphism:

ψ (ker(φ)(gh)) = φ(gh) = φ(g)φ(h) = ψ(ker(φ)g)ψ(ker(φ)h).


