Math 412. Adventure sheet on Quotient Groups

Fix an arbitrary group (G, o).
DEFINITION: A subgroup N of G is normal if for all g € G, the left and right N-cosets g/N and Ng
are the same subsets of G.

NoOTATION: If H C G is any subgroup, then G/H denotes the set of left cosets of H in G. Its
elements are sets denoted g H where g € GG. The cardinality of G/ H is called the index of H in G.

DEFINITION/THEOREM 8.13: Let N be a normal subgroup of GG. Then there is a well-defined binary
operation on the set G/N defined as follows:

G/N xG/N - G/N g NxgN = (g109)N
making GG/N into a group. We call this the quotient group “G modulo N

A. WARMUP: Define the sign map:
Sn — {£1} o lifoiseven; o — —1if o is odd.

(1) Prove that sign map is a group homomorphism.
(2) Use the sign map to give a different proof that A,, is a normal subgroup of .S, for all n.

(3) Describe the A,,-cosets of S,,. Make a table to describe the quotient group structure S,,/A,,. What
is the identity element?

Solution.

(1) By definition, if 7 is a transposition then 7 — —1. Given any element ¢ € S,,, if we write
o as a product of transpositions, say o = 71 ...7, then 0 — (—1)". Now if ¢/ € S, is a
product of r transpositions, oo’ is a product of k + r transpositions, and

oo’ = (=1 = (=1)*(=1)".
(2) By definition, A,, is the kernel of the sign map, and we have shown that the kernel of a group
homomorphism must be a normal subgroup.

(3) There are two cosets: A,, and S, \ A,, the last one being the set of odd permutations. The
identity element in S,, /A, is the coset A,,, and the group S,,/A,, is isomorphic to Zs.

B. OPERATIONS ON COSETS: Let (G, o) be a group and let N C G be a normal subgroup.

(1) Take arbitrary ng € Ng. Prove that there exists n’ € N such that ng = gn’'.
(2) Take any x € g1 N and any y € g /N. Prove that xy € g2 /V.
(3) Define a binary operation x on the set G/N of left N-cosets as follows:

G/N X G/N—>G/N glN*QQN: (glogg)N.

Think through the meaning: the elements of GG/N are sets and the operation * combines two of
these sets into a third set: how? Explain why the binary operation « is well-defined. Where are
you using normality of N?

(4) Prove that the operation % in (4) is associative.

(5) Prove that \V is an identity for the operation * in (4).

(6) Prove that every coset gV € (G/N has an inverse under the operation * in (4).

(7) Conclude that (G/N, x) is a group.
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(8) Does the set of right cosets also have a natural group structure? What is it? Does it differ from
G/N?

Solution.

(1) Since N is normal, Ng = gN. Given ng € Ng = gN, there exists n’ € N such that
ng = gn'.
(2) There exist some ny,no € N such that x = gynq and y = gons. Then

TY = Q1n1gany = gi(n1ga)ne.
We assumed that NV is normal, so n1gs € Ng» = ¢goN. Let n € N be such that nygy = gon.
Then
zy = g1(niga)n2 = gi(g2n)n1 = (g1g2)(nin) € (g192)N.

(3) The problem could be that if we can write a coset in two different ways, say ¢t N = hi N,
then when we multiply by another coset, say g, /N, then there could be two different possible
answers for (g1 N) - (g2N):

e One possible answer is (g192)V;

e another possible answer is (h1gs) V.
We need to check that we really only get one answer for each possible product; so we need to
check that (g1 g2) N = (h1g2)N. This is what we just did in the previous question!
A similar problem arises with the second factor. So to check that our operation really is well-
defined, we need to take any g1, h1, g2, ho such that gy N = hy N and go N = hy N, and verify
that (g192) N = (h1hg)N. Again, this is what the previous question says. This is equivalent
to proving that (g1g2)(h1he) ™t € N.

(4) Now that we know the operation is well-defined, it is easy to check that properties of the
operation on G pass to GG/H. In particular, « is associative because the operation on GG also
is associative:

(N x hN) * kN = (gh)N * kN = ((gh)k)N = (g(hk))N = gN x (hk)N = gN x (hN % kN).
(5) Given any g € G,
gN xeN = (ge)N = gN = (eg)N = eN % gN.
(6) Let g € G. Then
g 'NxgN=(g'g)N=N=(g97 )N =gN*g 'N.

(7) We have shown that this is a set with an associative operation for which there is an identity
and every element has an inverse, so this is a group.

C. EASY EXAMPLES OF QUOTIENT GROUPS:

(1) In (Z,+), explain why nZ is a normal subgroup and describe the corresponding quotient group.
(2) For any group G, explain why G is a normal subgroup of itself. What is the quotient G/G?
(3) For any group G, explain why {e} is a normal subgroup of G. What is the quotient G/{e}?

Solution.

(1) We have shown that every subgroup of an abelian group is normal, so nZ is a normal subgroup
of Z. The quotient group is the group (Z,, +).

(2) For every g € G, gGg~' C G, because G is closed for products. This means that G is a
normal subgroup of GG. The quotient G/ is the trivial group (with one element).




(3) Forevery g € G, g{e} = {g} = {e}g, so the trivial subgroup is normal. The quotient group
G /{e} is isomorphic to G.




D. ANOTHER EXAMPLE. Let G = ZJ;. Let N be the subgroup generated by [7].
(1) Give a one-line proof that NV is normal.

(2) List out the elements of GG and of N. Compute the order of both. Compute the index of N in G.
(3) List out the elements of G/N; don’t forget that each one is a coset (in particular, a set whose
elements you should list).

(4) Give each coset in G/N a reasonable name. Now make a multiplication table for the group G/N,
using these names. Is G/N abelian?

Solution.
(1) G is abelian, so NV is a normal subgroup.

2) G =1{1,2,3,4,6,7,8,9,11,12,13,14,16,17,18,19,21,22,23,24} and N = {1,7, 24, 18}.
So |Z35] = 5% — £ = 20 and |(7)| = 4. By Lagrange’s Theorem [ZJ; : (7)] = £ = 5.

(3) N ={1,7,24,18}, 2N = {2,14,23,11}, 3N = {3,14,22,4}, 6N = {6,17,19,8}, 9N =
{9,13,16, 12}.

(4) Actually, this is just Zs: it is a group of order 5. So yes, this is an abelian group, and writing
a multiplication table is quite easy. What if we wanted to give an explicit isomorphism to Zs?
Our isomorphism must send NV to [0]5. Now which element gets sent to [1]5 does not matter:
every element in Zs is a generator! But once we pick what element goes to [1]5, the others

are completely determined. For example, we can have 2N — [1]5, 3N — [2]5, 6N — [4]5
and 9N — [3]5.

E. THE CANONICAL QUOTIENT MAP: Prove that the map

G—G/N g~ gN
is a group homomorphism. What is its kernel?

Solution. Write ¢ for the canonical map. Given g, h € G, ¢(gh) = (gh)N = gN x hN = ¢(g)p(h).

The kernel of the canonical map is /N. This shows that given any normal subgroup /V, there is always
a group homomorphism with kernel N.

F. INDEX TWO. Suppose that H is an index two subgroup of GG. Last time, we proved the
THEOREM: Every subgroup of index two in G is normal.

(1) Describe the quotient group G/ H. What are its elements? What is the table?

(2) Find an example of an index two subgroup of D,, and describe its two cosets explicitly. Make a
table for this group and describe the canonical quotient map G — G/ H explicitly.

Solution.

(1) This is a group of order 2, so isomorphic to Z,. The elements are H and G \ H.
(2) The group of rotations! It has n elements, the n rotations.

G. PRODUCTS AND QUOTIENT GROUPS: Let K and H be arbitrary groups and let G = K x H.



(1) Find a natural homomorphism G — H whose kernel K’ is K x epy.
(2) Prove that K’ is a normal subgroup of (G, whose cosets are all of the form K x h forh € H.

(3) Prove that G/K' is isomorphic to H.

Solution.

(1) Consider the projection onto the second component, meaning the map ¢ : G — H given by
¢(k,h) = h. Then (k,h) € K'if and only if h = ey, or equivalently, (k,h) € K X ep.

(2) Since K’ is the kernel of of a group homomorphism, K’ is normal. Now note that for each
heH,

K xh={(k,h) ke K} = (K xepn)(eg,h).

On the other hand, given any K-coset K'(k,h), (eq,h) = (k™% eq)(k,h) € K'(k,h). So
every coset is of the form K x h for some h. Finally, if h, ' € H, then K x h = K x b’ if
and only if (e, /)(e,h™1) € K X {e}, or equivalently, A’h~! = e.

H. What goes wrong if we try to define a group structure on the set of right cosets G/H where H is a
non-normal subgroup of G'? Try illustrating the problem with the non-normal subgroup ((12)) in Ss.

Solution.

I. THE FIRST ISOMORPHISM THEOREM. Conjecture and prove first isomorphism theorem for groups.

Solution. The First Isomorphism Theorem says the following:
Given a surjective group homomorphism ¢ : G — H, H = G/ ker(¢).
Here is a proof:

Consider the map ¢ : G/ ker(¢) — H given by ¢(ker(¢)g) = ¢(g).

This map ¢ is well-defined: given g, h € G such that ker(¢)g = ker(¢)h, by definition we have
gh™! € ker(¢), so ¢(gh™') = e, and thus ¢(g) = ¢(h).

Moreover, this map %) is a group homomorphism:

W (ker(¢)(gh)) = d(gh) = ¢(g)d(h) = ¥ (ker(¢)g)i(ker(p)h).




