Math 412. Adventure sheet on Quotient Groups

Fix an arbitrary group (G, \circ).
Definition: A subgroup N of G is normal if for all $g \in G$, the left and right N-cosets $g N$ and $N g$ are the same subsets of G.

Notation: If $H \subseteq G$ is any subgroup, then G / H denotes the set of left cosets of H in G. Its elements are sets denoted $g H$ where $g \in G$. The cardinality of G / H is called the index of H in G.

Definition/Theorem 8.13: Let N be a normal subgroup of G. Then there is a well-defined binary operation on the set G / N defined as follows:

$$
G / N \times G / N \rightarrow G / N \quad g_{1} N \star g_{2} N=\left(g_{1} \circ g_{2}\right) N
$$

making G / N into a group. We call this the quotient group " G modulo N ".
A. Warmup: Define the sign map:

$$
S_{n} \rightarrow\{ \pm 1\} \quad \sigma \mapsto 1 \text { if } \sigma \text { is even; } \sigma \mapsto-1 \text { if } \sigma \text { is odd. }
$$

(1) Prove that sign map is a group homomorphism.
(2) Use the sign map to give a different proof that A_{n} is a normal subgroup of S_{n} for all n.
(3) Describe the A_{n}-cosets of S_{n}. Make a table to describe the quotient group structure S_{n} / A_{n}. What is the identity element?

Solution.

(1) By definition, if τ is a transposition then $\tau \mapsto-1$. Given any element $\sigma \in S_{n}$, if we write σ as a product of transpositions, say $\sigma=\tau_{1} \ldots \tau_{k}$, then $\sigma \mapsto(-1)^{n}$. Now if $\sigma^{\prime} \in S_{n}$ is a product of r transpositions, $\sigma \sigma^{\prime}$ is a product of $k+r$ transpositions, and

$$
\sigma \sigma^{\prime} \mapsto(-1)^{k+r}=(-1)^{k}(-1)^{r}
$$

(2) By definition, A_{n} is the kernel of the sign map, and we have shown that the kernel of a group homomorphism must be a normal subgroup.
(3) There are two cosets: A_{n} and $S_{n} \backslash A_{n}$, the last one being the set of odd permutations. The identity element in S_{n} / A_{n} is the coset A_{n}, and the group S_{n} / A_{n} is isomorphic to \mathbb{Z}_{2}.
B. Operations on Cosets: Let (G, \circ) be a group and let $N \subseteq G$ be a normal subgroup.
(1) Take arbitrary $n g \in N g$. Prove that there exists $n^{\prime} \in N$ such that $n g=g n^{\prime}$.
(2) Take any $x \in g_{1} N$ and any $y \in g_{2} N$. Prove that $x y \in g_{1} g_{2} N$.
(3) Define a binary operation \star on the set G / N of left N-cosets as follows:

$$
G / N \times G / N \rightarrow G / N \quad g_{1} N \star g_{2} N=\left(g_{1} \circ g_{2}\right) N .
$$

Think through the meaning: the elements of G / N are sets and the operation \star combines two of these sets into a third set: how? Explain why the binary operation \star is well-defined. Where are you using normality of N ?
(4) Prove that the operation \star in (4) is associative.
(5) Prove that N is an identity for the operation \star in (4).
(6) Prove that every coset $g N \in G / N$ has an inverse under the operation \star in (4).
(7) Conclude that $(G / N, \star)$ is a group.
(8) Does the set of right cosets also have a natural group structure? What is it? Does it differ from G / N ?

Solution.

(1) Since N is normal, $N g=g N$. Given $n g \in N g=g N$, there exists $n^{\prime} \in N$ such that $n g=g n^{\prime}$.
(2) There exist some $n_{1}, n_{2} \in N$ such that $x=g_{1} n_{1}$ and $y=g_{2} n_{2}$. Then

$$
x y=g_{1} n_{1} g_{2} n_{2}=g_{1}\left(n_{1} g_{2}\right) n_{2}
$$

We assumed that N is normal, so $n_{1} g_{2} \in N g_{2}=g_{2} N$. Let $n \in N$ be such that $n_{1} g_{2}=g_{2} n$. Then

$$
x y=g_{1}\left(n_{1} g_{2}\right) n_{2}=g_{1}\left(g_{2} n\right) n_{1}=\left(g_{1} g_{2}\right)\left(n_{1} n\right) \in\left(g_{1} g_{2}\right) N .
$$

(3) The problem could be that if we can write a coset in two different ways, say $g_{1} N=h_{1} N$, then when we multiply by another coset, say $g_{2} N$, then there could be two different possible answers for $\left(g_{1} N\right) \cdot\left(g_{2} N\right)$:

- One possible answer is $\left(g_{1} g_{2}\right) N$;
- another possible answer is $\left(h_{1} g_{2}\right) N$.

We need to check that we really only get one answer for each possible product; so we need to check that $\left(g_{1} g_{2}\right) N=\left(h_{1} g_{2}\right) N$. This is what we just did in the previous question!
A similar problem arises with the second factor. So to check that our operation really is welldefined, we need to take any $g_{1}, h_{1}, g_{2}, h_{2}$ such that $g_{1} N=h_{1} N$ and $g_{2} N=h_{2} N$, and verify that $\left(g_{1} g_{2}\right) N=\left(h_{1} h_{2}\right) N$. Again, this is what the previous question says. This is equivalent to proving that $\left(g_{1} g_{2}\right)\left(h_{1} h_{2}\right)^{-1} \in N$.
(4) Now that we know the operation is well-defined, it is easy to check that properties of the operation on G pass to G / H. In particular, \star is associative because the operation on G also is associative:
$(g N \star h N) \star k N=(g h) N \star k N=((g h) k) N=(g(h k)) N=g N \star(h k) N=g N \star(h N \star k N)$.
(5) Given any $g \in G$,

$$
g N \star e N=(g e) N=g N=(e g) N=e N \star g N .
$$

(6) Let $g \in G$. Then

$$
g^{-1} N \star g N=\left(g^{-1} g\right) N=N=\left(g g^{-1}\right) N=g N \star g^{-1} N
$$

(7) We have shown that this is a set with an associative operation for which there is an identity and every element has an inverse, so this is a group.

C. EASY EXAMPLES OF QUOTIENT GROUPS:

(1) In $(\mathbb{Z},+)$, explain why $n \mathbb{Z}$ is a normal subgroup and describe the corresponding quotient group.
(2) For any group G, explain why G is a normal subgroup of itself. What is the quotient G / G ?
(3) For any group G, explain why $\{e\}$ is a normal subgroup of G. What is the quotient $G /\{e\}$?

Solution.

(1) We have shown that every subgroup of an abelian group is normal, so $n \mathbb{Z}$ is a normal subgroup of \mathbb{Z}. The quotient group is the group $\left(\mathbb{Z}_{n},+\right)$.
(2) For every $g \in G, g G g^{-1} \subseteq G$, because G is closed for products. This means that G is a normal subgroup of G. The quotient G / G is the trivial group (with one element).
(3) For every $g \in G, g\{e\}=\{g\}=\{e\} g$, so the trivial subgroup is normal. The quotient group $G /\{e\}$ is isomorphic to G.
D. ANOTHER EXAMPLE. Let $G=\mathbb{Z}_{25}^{\times}$. Let N be the subgroup generated by [7].
(1) Give a one-line proof that N is normal.
(2) List out the elements of G and of N. Compute the order of both. Compute the index of N in G.
(3) List out the elements of G / N; don't forget that each one is a coset (in particular, a set whose elements you should list).
(4) Give each coset in G / N a reasonable name. Now make a multiplication table for the group G / N, using these names. Is G / N abelian?

Solution.

(1) G is abelian, so N is a normal subgroup.
(2) $G=\{1,2,3,4,6,7,8,9,11,12,13,14,16,17,18,19,21,22,23,24\}$ and $N=\{1,7,24,18\}$. So $\left|\mathbb{Z}_{25}^{\times}\right|=5^{2}-\frac{25}{5}=20$ and $|\langle 7\rangle|=4$. By Lagrange's Theorem $\left[\mathbb{Z}_{25}^{\times}:\langle 7\rangle\right]=\frac{20}{4}=5$.
(3) $N=\{1,7,24,18\}, 2 N=\{2,14,23,11\}, 3 N=\{3,14,22,4\}, 6 N=\{6,17,19,8\}, 9 N=$ $\{9,13,16,12\}$.
(4) Actually, this is just \mathbb{Z}_{5} : it is a group of order 5 . So yes, this is an abelian group, and writing a multiplication table is quite easy. What if we wanted to give an explicit isomorphism to \mathbb{Z}_{5} ? Our isomorphism must send N to $[0]_{5}$. Now which element gets sent to $[1]_{5}$ does not matter: every element in \mathbb{Z}_{5} is a generator! But once we pick what element goes to $[1]_{5}$, the others are completely determined. For example, we can have $2 N \mapsto[1]_{5}, 3 N \mapsto[2]_{5}, 6 N \mapsto[4]_{5}$ and $9 N \mapsto[3]_{5}$.
E. The canonical quotient map: Prove that the map

$$
G \rightarrow G / N \quad g \mapsto g N
$$

is a group homomorphism. What is its kernel?
Solution. Write ϕ for the canonical map. Given $g, h \in G, \phi(g h)=(g h) N=g N \star h N=\phi(g) \phi(h)$. The kernel of the canonical map is N. This shows that given any normal subgroup N, there is always a group homomorphism with kernel N.
F. Index two. Suppose that H is an index two subgroup of G. Last time, we proved the

THEOREM: Every subgroup of index two in G is normal.

(1) Describe the quotient group G / H. What are its elements? What is the table?
(2) Find an example of an index two subgroup of D_{n} and describe its two cosets explicitly. Make a table for this group and describe the canonical quotient map $G \rightarrow G / H$ explicitly.

Solution.

(1) This is a group of order 2 , so isomorphic to \mathbb{Z}_{2}. The elements are H and $G \backslash H$.
(2) The group of rotations! It has n elements, the n rotations.
(1) Find a natural homomorphism $G \rightarrow H$ whose kernel K^{\prime} is $K \times e_{H}$.
(2) Prove that K^{\prime} is a normal subgroup of G, whose cosets are all of the form $K \times h$ for $h \in H$.
(3) Prove that G / K^{\prime} is isomorphic to H.

Solution.

(1) Consider the projection onto the second component, meaning the map $\phi: G \longrightarrow H$ given by $\phi(k, h)=h$. Then $(k, h) \in K^{\prime}$ if and only if $h=e_{H}$, or equivalently, $(k, h) \in K \times e_{H}$.
(2) Since K^{\prime} is the kernel of of a group homomorphism, K^{\prime} is normal. Now note that for each $h \in H$,

$$
K \times h=\{(k, h): k \in K\}=\left(K \times e_{H}\right)\left(e_{G}, h\right) .
$$

On the other hand, given any K-coset $K^{\prime}(k, h),\left(e_{G}, h\right)=\left(k^{-1}, e_{H}\right)(k, h) \in K^{\prime}(k, h)$. So every coset is of the form $K \times h$ for some h. Finally, if $h, h^{\prime} \in H$, then $K \times h=K \times h^{\prime}$ if and only if $\left(e, h^{\prime}\right)\left(e, h^{-1}\right) \in K \times\{e\}$, or equivalently, $h^{\prime} h^{-1}=e$.

H . What goes wrong if we try to define a group structure on the set of right cosets G / H where H is a non-normal subgroup of G ? Try illustrating the problem with the non-normal subgroup $\langle(12)\rangle$ in S_{3}.

Solution.

I. The First Isomorphism Theorem. Conjecture and prove first isomorphism theorem for groups.

Solution. The First Isomorphism Theorem says the following:
Given a surjective group homomorphism $\phi: G \longrightarrow H, H \cong G / \operatorname{ker}(\phi)$.
Here is a proof:
Consider the map $\psi: G / \operatorname{ker}(\phi) \longrightarrow H$ given by $\phi(\operatorname{ker}(\phi) g)=\phi(g)$.
This map ψ is well-defined: given $g, h \in G$ such that $\operatorname{ker}(\phi) g=\operatorname{ker}(\phi) h$, by definition we have $g h^{-1} \in \operatorname{ker}(\phi)$, so $\phi\left(g h^{-1}\right)=e$, and thus $\phi(g)=\phi(h)$.
Moreover, this map ψ is a group homomorphism:

$$
\psi(\operatorname{ker}(\phi)(g h))=\phi(g h)=\phi(g) \phi(h)=\psi(\operatorname{ker}(\phi) g) \psi(\operatorname{ker}(\phi) h) .
$$

