Homework #9

Problems to hand in on Thursday, April 4, in the beginning of class. Write your answers out carefully, staple pages, and write your name and section number on each page.

- 1) (a) Prove Fermat's Little Theorem: if p is prime and $p \nmid a$, then $a^{p-1} \equiv 1 \mod p$.
 - (b) If G is a group of prime order p, then G is cyclic.
 - (c) A nontrivial group G has no nontrivial proper subgroups if and only if G is finite and of order p where p is prime.

Solution.

- (a) In general, if G is a group of order n, then $g^n = e$ for any $g \in G$, since the order of g divides n by Lagrange's Theorem. Since \mathbb{Z}_p^{\times} is as group of order p-1, every element in \mathbb{Z}_p^{\times} verifies $g^{p-1} = 1$. Given an integer a such that $p \nmid a$, the class of a is an element of \mathbb{Z}_p^{\times} , and thus $a^{p-1} \equiv 1$.
- (b) Suppose that G is a group of order p, and let $g \in G$ be an element that is not the identity in G. By Lagrange's Theorem, the order of g divides |G| = p, and since the order of g cannot be 1, we conclude it must be p. Therefore, $\langle g \rangle = G$, and G is cyclic.
- (c) Suppose that G has no nontrivial subgroups. Given any $g \in G$ that is not the identity, $\langle g \rangle$ is a nontrivial subgroup of G, and so the only possibility is that $\langle g \rangle = G$. We conclude that G is cyclic. If G is infinite, then g has infinite order, and the powers g, g^2, g^3, \cdots are all distinct. In particular, $g \notin \langle g^2 \rangle$, wich implies that $\langle g^2 \rangle$ is a proper subgroup of G. Therefore, G must be finite. We conclude that G is isomorphic to \mathbb{Z}_n for some n = |G|. If n = ab, then [a] has order b, and since G has no nontrivial proper subgroups, we conclude that either a = 1 and b = n or a = n and b = 1. In other words, n must be prime.

On the other hand, suppose that G is a finite group of order p. We have seen that G must then be cyclic, so isomorphic to \mathbb{Z}_p . Consider any $a \in \mathbb{Z}$ such that $p \nmid a$. There exist $u, v \in \mathbb{Z}$ such that au + pv = 1, so $au \equiv 1 \mod p$ for some u. In particular, $\langle [a] \rangle = \langle [1] \rangle = \mathbb{Z}_p$. This shows there are no nontrivial proper subgroups of \mathbb{Z}_p .

2) The goal of this problem is to prove the following fact:

Given positive integers n and p, if p is prime then n! divides $(p^n - 1)(p^n - p) \cdots (p^n - p^{n-1})$.

- (a) Describe a subgroup of $GL_n(\mathbb{Z}_p)$ that is isomorphic to \mathbb{S}_n .
- (b) Count the elements in $GL_n(\mathbb{Z}_p)$.
- (c) Prove the fact.

Solution.

- (a) The permutation matrices: see G in the adventure sheet on permutation groups.
- (b) This is just a generalization of what we did before for n = 2. The first column can be any nonzero vector (there are $p^n - 1$ options), the second column cannot be a multiple of the first column $(p^n - p$ choices), the third column cannot be a linear combination of the first two $(p^n - p^2$ choices), etc. For the k-th column, there are $p^n - p^{k-1}$ options. The total number of invertible $n \times n$ matrices is $(p^n - 1)(p^n - p) \cdots (p^n - p^{n-1})$.
- (c) There is a subgroup of order n! of a group of order $(p^n 1)(p^n p) \cdots (p^n p^{n-1})$; by Lagrange's theorem, the order of a subgroup divides the order of the group.
- 3) Let X be any set and ~ be an equivalence relation on X. Write $\mathscr{E}(x)$ to denote the equivalence class of x.
 - (a) Given $x, y \in X$, show that $x \sim y$ if and only if $\mathscr{E}(x) = \mathscr{E}(y)$.
 - (b) Given $x, y \in X$, show that either $\mathscr{C}(x) = \mathscr{C}(y)$ or $\mathscr{C}(x) \cap \mathscr{C}(y) = \emptyset$.
 - (c) Show that X is the disjoint union of all the equivalence classes for \sim .

Solution.

- (a) If $x \sim y$, then $z \in \mathscr{C}(x)$ if and only if $z \sim x$, which by transitivity is equivalent to $z \sim y$, which happens if and only if $z \in \mathscr{C}(y)$.
- (b) By symmetry, if $z \sim x$ and $z \sim y$, then $x \sim y$. Suppose $x \not\sim y$; then $z \sim x$ implies $z \not\sim y$, and $z \sim y$ implies $z \sim x$. If $z \in \mathscr{C}(x)$ then $z \sim x$, and thus $z \not\sim y$, so $z \notin \mathscr{C}(y)$. This shows that $\mathscr{C}(x) \cap \mathscr{C}(y) = \emptyset$ whenever $x \not\sim y$.
- (c) We have shown that all the distinct equivalence classes are disjoint. On the other hand, every element $x \in X$ is in some equivalence class, by reflexivity.

4) Let $R = \mathbb{R}[x]$. Consider the group action of $G = \mathbb{Z}_2$ on R by the rules

 $[0]_2 \cdot f(x) = f(x)$ and $[1]_2 \cdot f(x) = f(-x)$.

Show that the set of *invariant polynomials* $\{r \in R \mid g \cdot r = r \text{ for all } g \in G\}$ is a subring of R, and describe this subring explicitly.

Solution. Let S be the set of invariant polynomials. Note that a polynomial p is invariant if and only if p(-x) = p(x).

- S contains 0 and 1.
- S is closed under addition: If $p, q \in S$, then (p+q)(-x) = p(-x) + q(-x) = p(x) + q(x) = (p+q)(x).
- S is closed under multiplication: If $p, q \in S$, then (pq)(-x) = p(-x)q(-x) = p(x)q(x) = (pq)(x).

• S is closed for additive inverses: If $p \in S$, then (-p)(-x) = -p(-x) = -p(x) = (-p)(x).

Now note that all even polynomials are in S, meaning all the polynomials of the form $a_0 + a_2 x^2 + \cdots + a_{2n} x^{2n}$. Indeed, all polynomials of this form can be obtained by adding and multiplying multiple copies of 1 and x^2 , and $1, x^2 \in S$. On the other hand, these are all the polynomials in S. To see that, just note that given any polynomial

$$p(x) = a_0 + a_1 x + \dots + a_n x^n,$$

we have

$$p(x) - p(-x) = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} 2a_{2i+1}x^{2i+1}$$

So p(x) = p(-x) if and only if all the odd degree coefficients of p are zero.