
Winter 2019 Math 412

Homework #9

Problems to hand in on Thursday, April 4, in the beginning of class. Write your answers out
carefully, staple pages, and write your name and section number on each page.

1) (a) Prove Fermat’s Little Theorem: if p is prime and p - a, then ap−1 ≡ 1 mod p.

(b) If G is a group of prime order p, then G is cyclic.

(c) A nontrivial group G has no nontrivial proper subgroups if and only if G is finite and of
order p where p is prime.

Solution.

(a) In general, if G is a group of order n, then gn = e for any g ∈ G, since the order of g
divides n by Lagrange’s Theorem. Since Z×p is as group of order p − 1, every element
in Z×p verifies gp−1 = 1. Given an integer a such that p - a, the class of a is an elment
of Z×p , and thus ap−1 ≡ 1.

(b) Suppose that G is a group of order p, and let g ∈ G be an element that is not the
identity in G. By Lagrange’s Theorem, the order of g divides |G| = p, and since the
order of g cannot be 1, we conclude it must be p. Therefore, 〈g〉 = G, and G is cyclic.

(c) Suppose that G has no nontrivial subgroups. Given any g ∈ G that is not the identity,
〈g〉 is a nontrivial subgroup of G, and so the only possibility is that 〈g〉 = G. We
conclude that G is cyclic. If G is infinite, then g has infinite order, and the powers
g, g2, g3, · · · are all distinct. In particular, g /∈ 〈g2〉, wicih implies that 〈g2〉 is a proper
subgroup of G. Therefore, G must be finite. We conclude that G is isomorphic to Zn

for some n = |G|. If n = ab, then [a] has order b, and since G has no nontrivial proper
subgroups, we conclude that either a = 1 and b = n or a = n and b = 1. In other
words, n must be prime.

On the other hand, suppose that G is a finite group of order p. We have seen that G
must then be cyclic, so isomorphic to Zp. Consider any a ∈ Z such that p - a. There
exist u, v ∈ Z such that au + pv = 1, so au ≡ 1 mod p for some u. In particular,
〈[a]〉 = 〈[1]〉 = Zp. This shows there are no nontrivial proper subgroups of Zp.

2) The goal of this problem is to prove the following fact:

Given positive integers n and p, if p is prime then n! divides (pn− 1)(pn− p) · · · (pn− pn−1).

(a) Describe a subgroup of GLn(Zp) that is isomorphic to Sn.

(b) Count the elements in GLn(Zp).

(c) Prove the fact.

Solution.
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(a) The permutation matrices: see G in the adventure sheet on permutation groups.

(b) This is just a generalization of what we did before for n = 2. The first column can be
any nonzero vector (there are pn− 1 options), the second column cannot be a multiple
of the first column (pn − p choices), the third column cannot be a linear combination
of the first two (pn−p2 choices), etc. For the k-th column, there are pn−pk−1 options.
The total number of invertible n× n matrices is (pn − 1)(pn − p) · · · (pn − pn−1).

(c) There is a subgroup of order n! of a group of order (pn − 1)(pn − p) · · · (pn − pn−1); by
Lagrange’s theorem, the order of a subgroup divides the order of the group.

3) Let X be any set and ∼ be an equivalence relation on X. WriteE(x) to denote the equivalence
class of x.

(a) Given x, y ∈ X, show that x ∼ y if and only if E(x) =E(y).

(b) Given x, y ∈ X, show that either E(x) =E(y) or E(x) ∩E(y) = ∅.
(c) Show that X is the disjoint union of all the equivalence classes for ∼.

Solution.

(a) If x ∼ y, then z ∈ E(x) if and only if z ∼ x, which by transitivity is equivalent to

z ∼ y, which happens if and only if z ∈E(y).

(b) By symmetry, if z ∼ x and z ∼ y, then x ∼ y. Suppose x 6∼ y; then z ∼ x implies

z 6∼ y, and z ∼ y implies z ∼ x. If z ∈E(x) then z ∼ x, and thus z 6∼ y, so z /∈E(y).

This shows thatE(x) ∩E(y) = ∅ whenever x 6∼ y.

(c) We have shown that all the distinct equivalence classes are disjoint. On the other hand,
every element x ∈ X is in some equivalence class, by reflexivity.

4) Let R = R[x]. Consider the group action of G = Z2 on R by the rules

[0]2 · f(x) = f(x) and [1]2 · f(x) = f(−x).

Show that the set of invariant polynomials {r ∈ R | g · r = r for all g ∈ G} is a subring of R,
and describe this subring explicitly.

Solution. Let S be the set of invariant polynomials. Note that a polynomial p is invariant
if and only if p(−x) = p(x).

• S contains 0 and 1.

• S is closed under addition:

If p, q ∈ S, then (p + q)(−x) = p(−x) + q(−x) = p(x) + q(x) = (p + q)(x).

• S is closed under multiplication:

If p, q ∈ S, then (pq)(−x) = p(−x)q(−x) = p(x)q(x) = (pq)(x).

2



Winter 2019 Math 412

• S is closed for additive inverses:

If p ∈ S, then (−p)(−x) = −p(−x) = −p(x) = (−p)(x).

Now note that all even polynomials are in S, meaning all the polynomials of the form
a0 + a2x

2 + · · · + a2nx
2n. Indeed, all polynomials of this form can be obtained by adding

and multiplying multiple copies of 1 and x2, and 1, x2 ∈ S. On the other hand, these are all
the polynomials in S. To see that, just note that given any polynomial

p(x) = a0 + a1x + · · ·+ anx
n,

we have

p(x)− p(−x) =

bn
2
c∑

i=0

2a2i+1x
2i+1.

So p(x) = p(−x) if and only if all the odd degree coefficients of p are zero.
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