Homework #9

Problems to hand in on Thursday, April 4, in the beginning of class. Write your answers out carefully, staple pages, and write your name and section number on each page.

- 1) (a) Prove Fermat's Little Theorem: if p is prime and $p \nmid a$, then $a^{p-1} \equiv 1 \mod p$.
 - (b) If G is a group of prime order p, then G is cyclic.
 - (c) A nontrivial group G has no nontrivial proper subgroups if and only if G is finite and of order p where p is prime.
- 2) The goal of this problem is to prove the following fact:

Given positive integers n and p, if p is prime then n! divides $(p^n - 1)(p^n - p) \cdots (p^n - p^{n-1})$.

- (a) Describe a subgroup of $GL_n(\mathbb{Z}_p)$ that is isomorphic to \mathbb{S}_n .
- (b) Count the elements in $GL_n(\mathbb{Z}_p)$.
- (c) Prove the fact.
- 3) Let X be any set and ~ be an equivalence relation on X. Write $\mathscr{C}(x)$ to denote the equivalence class of x.
 - (a) Given $x, y \in X$, show that $x \sim y$ if and only if $\mathscr{C}(x) = \mathscr{C}(y)$.
 - (b) Given $x, y \in X$, show that either $\mathscr{A}(x) = \mathscr{A}(y)$ or $\mathscr{A}(x) \cap \mathscr{A}(y) = \emptyset$.
 - (c) Show that X is the disjoint union of all the equivalence classes for \sim .
- 4) Let $R = \mathbb{R}[x]$. Consider the group action of $G = \mathbb{Z}_2$ on R by the rules

 $[0]_2 \cdot f(x) = f(x)$ and $[1]_2 \cdot f(x) = f(-x).$

Show that the set of *invariant polynomials* $\{r \in R \mid g \cdot r = r \text{ for all } g \in G\}$ is a subring of R, and describe this subring explicitly.