
Winter 2019 Math 412

Homework #8

Problems to hand in on Thursday, March 28, in the beginning of class. Write your answers out
carefully, staple pages, and write your name and section number on each page.

1) Let S1 be the subset of C consisting of complex numbers of absolute value 1; that is

S1 := {z ∈ C | |z| = 1}.

(a) Prove that S1 is a subgroup of C×.

(b) Prove that the map

S1 → SL2(R) x+ iy 7→
[
x −y
y x

]
is an injective group homomorphism.

(c) Prove that S1 is isomorphic to SO2(R), the group of 2 × 2 orthogonal matrices of deter-
minant 1. Use this to give a geometric interpretation of the group S1 that explains why
some call it the “continuous rotation group.”

(d) For every positive integer n, find an element of order n in S1.

(e) Find an element of infinite order in S1.

Solution.

(a) Given x, y ∈ S1, |xy| = |x||y| = 1, so S1 is closed for the product. Moreover, 1 ∈ S1,
and |x−1| = |x|−1 = 1, so S1 is also closed for inverses. We conclude that S1 is a
subgroup of C.

(b) It is clear this map is injective, and it lands inside SL2 since

det

(
x −y
y x

)
= x2 + y2 = |x+ iy| = 1.

To see that this is a group homomorphism, just notice that[
x −y
y x

] [
z −w
w z

]
=

[
xz − yw −(xw + yz)
yz + xw xz − yw

]
,

and
(x+ iy)(z + iw) = (xz − yw) + i(xw + yz).

(c) By 217, the set of orthogonal 2 × 2 matrices is precisely the set of all matrices of the
form [

x −y
y x

]
.

Therefore, image of the injective group homomorphism in (b) is precisely SO2(R), and
this is the isomorphism we are looking for.
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(d) The matrix [
cos

(
2π
n

)
− sin

(
2π
n

)
sin

(
2π
n

)
cos

(
2π
n

) ]
corresponds to the rotation by 2π

n around the origin in R2, so this is an element of
order n in O2(R). Its preimage is the element z = cos

(
2π
n

)
+ i sin

(
2π
n

)
∈ S1, and z is

an element of S1 of order n.

Another way to think about z is to rewrite it as z = e
2π
n
i, which is a primitive n-th

root of unity, so an element of S1 of order n.

(e) Consider a rotation centered at the origin of R2 by any irrational multiple of 2π; for
example, the rotation by 2 radians. This gives an element of O2(R) or infinite order,
corresponding to z = e2i ∈ S1.

2) Towards the end of the worksheet on group homomorphisms, we encountered the following:

Theorem: If F is a finite field, then F× is cyclic.

(a) Check that 2 is not a generator for Z×17 but 3 is a generator for Z×17.
(b) Verify that F9 = Z3[x]/(x2 + x+ 2) is a field, and find a generator for F×9 .

(c) Read Corollary 7.10 on page 200, and use this corollary to prove the Theorem above.1

(d) The Theorem above only applies to finite fields, but we can sometimes describe multi-
plicative groups of infinite fields in terms of other groups. Show that R× ∼= R× Z2.

(e) Show that C× ∼= R× S1.

Solution.

(a) 〈2〉 = {2, 4, 8, 16, 15, 13, 9, 1} – so 2 only has order 8. On the other hand, 〈3〉 =
{3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6, 1}.

(b) p(x) = x2 + x + 2 is irreducible, since it is a polynomial of degree 2 with no roots:
p(0) = 02 + 0 + 2 = 2 6= 0, p(1) = 12 + 1 + 2 = 1 6= 0, and p(2) = 22 + 2 + 2 = 2 6= 0.
F×9 is generated by

(c)

(d) We will think of Z2 as the set {1,−1} with the operation ×. Consider the map f :
R× Z2 −→ R× given by

f(x, y) = yex.

This is a group homomorphism:

f(x, y)f(z, w) = (yex)(wez) = (yw)ex+z = f(x+ z, yz).

Moreover, the map g : R× −→ R×Z2 given by g(z) = (log(|z|), z|z|) is the inverse of f :

fg(z) = f

(
log(|z|), z

|z|

)
=

z

|z|
e|z| = z and gf(x, y) = g(yex) =

(
log(ex),

yex

ex

)
= (x, y).

This shows that f is bijective, and thus an isomorphism.

1For a hint, look at the worksheet on group homomorphisms.
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(e) Consider the map f : C× −→ R × S1 given by f(z) =
(

log(|z|), z|z|
)

. Again, this is a

group homomorphism, with inverse f : R× S1 −→ C× given by f(x, y) = exy.

3) Consider the following elements in GL2(C) :

1 =

[
1 0
0 1

]
, i =

[
i 0
0 −i

]
, j =

[
0 1
−1 0

]
, k =

[
0 i
i 0

]
,

Let Q be the subgroup of GL2(C) generated by the matrices i, j,k. You should verify (but not
necessarily turn in a proof) that Q contains the 8 elements {±1,±i,±j,±k}, You may wish to
make a multiplication table for Q to answer the following questions. (You do not need to turn
in the multiplication table – although notice you have already written in down in last week’s
webwork!)

(a) Find the complete list of all cyclic subgroups of Q of order 4.

(b) Find the complete list of all cyclic subgroups of Q of order 2.

(c) Find the complete list of all noncyclic subgroups of Q of order 4.

(d) Can Q be generated by two elements? Prove it.

(e) Is Q8 isomorphic to D4? Prove or disprove.

Solution.

(a) 〈i〉, 〈j〉, 〈k〉. Notice ij = k, jk = i, ki = j.

(b)

〈(
−1 0
0 −1

)〉
.

(c) There aren’t any!

(d) Yes! Since ij = k, 〈i〉 = Q.

(e) No, since D8 has a noncyclic subgroup of order 4.

4) Consider the symmetric group Sn.

(a) Show that every element of Sn is a product of transpositions.2

(b) Let τ ∈ Sn be a permutation, and ( a b ) be a transposition. Show that τ( a b )τ−1 =
( τ(a) τ(b) ), the transposition changing τ(a) and τ(b).

(c) Show that ( i j ) = ( 1 i )( 1 j )( 1 i ). Conclude that every element of Sn is the product of
transpositions of the form ( 1 i ).

(d) Let σ be the n-cycle (2 · · · n ). Show that ( 1 i ) = σi−1( 1 2 )(σ−1)i−1. Conclude that
Sn = 〈( 1 2 ), (2 · · · n )〉.

2Hint: One possibility for a quick solution is induction on n. Can you multiply any permutation by a transposition
to obtain a permutation that fixes one element?
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Solution. Important note: a permutation is a function {1, . . . , n} −→ {1, . . . , n}.

(a) First, we observe that every element in S2 is a product of transpositions, since the only
element besides the identity is the transposition (1 2). Now suppose that every element
in Sn is indeed a product of transpositions. Consider any element σ ∈ Sn+1. Suppose
that σ(n + 1) = i. Then τ = (n + 1 i)σ fixes n + 1, so we can think about it as an
element of Sn. Then by assumption τ can be written as a product of transpositions.
Finally, σ = (n+ 1 i)τ is a product of transpositions.

(b) Write σ = τ( a b )τ−1. Then

σ(τ(a)) =
(
τ(a b)τ−1

)
(τ(a)) = (τ(a b)) (a) = τ(b).

Similarly, we can show that σ(τ(b)) = τ(a). Moreover, given k 6= τ(a), τ(b), we have
τ−1(k) 6= a, b. Therefore,

σ(k) =
(
τ(a b)τ−1

)
(k) = (τ(a b)) (τ−1(k)) = τ(τ−1(k)) = k.

We conclude that σ switches τ(a), τ(b) and fixes all other elements.

(c) Apply the previous formula with τ = (1 i), a = 1, and b = j; then ( 1 i )( 1 j )( 1 i ) =
( i j ) follows immediately. Since every element in Sn is a product of transpositions and
any transposition is a product of elements of the form (1 i), we conclude that every
element is a product of transpositions of the form (1 i).

(d) First, note that (σ−1)i−1 =
(
σi−1

)−1
. Therefore,

σi−1( 1 2 )(σ−1)i−1 =
(
σi−1(1) σi−1(2)

)
= (1 i).

In particular, 〈( 1 2 ), (2 · · · n )〉 contains all the cycles of the form (1 i), and thus all
elements of Sn.
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