Winter 2019 Math 412

Homework #5

Problems to hand in on Thursday, February 21, in the beginning of class. Write your answers out
carefully, staple pages, and write your name and section number on each page.

1) Let R = R[x,y] be the polynomial ring in two variables z,y.
a) Let S C R?. Show that the set
Is:={f(z,y) € R| f(a,b) =0 for all (a,b) € S}

is an ideal of R|z, y].
b) If S ={(0,0)}, what is Ig?
c¢) Show that, with Ig asin b), R/Ig = R.

Solution.

(a) Let f(z,v),9(z,y) € Is. Then, (f + g)(a,b) = f(a,b) + g(a,b) = 0 for all (a,b) € S,
so (f +9g)(z,y) € Is. Let h(z,y) € R. Then (fh)(a,b) = f(a,b)h(a,b) = 0 for all
(a,b) € S, so (fh)(a,b) € R. Finally, 0 € Ig, so Ig is an ideal.

(b) A function f(z,y) is in Ig if and only if f(0,0) = 0, which happens if and only if the
constant term of f is zero.

(c) First, we note that f(z,y) is equivalent to g(x,y) modulo Ig if and only if the difference
is in Ig, which happens if and only if they have the same constant term. Thus, there
is a map from R/Ig to R sending f(z,y) + Is to f(0,0) (the constant term of f),
and this function is well-defined, since another element in f(z,y) + Is must have the
same constant term. This map is injective, since elements in different classes have
different constant terms. It is surjective, since any real number is the constant term of
some polynomial (e.g., a constant polynomial). Finally, the homomorphism properties
hold: (f 4 ¢)(0,0) = £(0,0) + g(0,0), (f9)(0,0) = £(0,0) + g(0,0, and £(0,0) =1 for
flxy) =1

Alternatively, we could use the first isomorphism theorem here.

2) Consider the ring Ms(R).

a) Take any nonzero 2 x 2 matrix A. Show that by multiplying A on the left by matrices of the

o ERE AR R A ]

we can do any elementary row operation to A.
b) State a way of interpreting column operations using matrix multiplication.
c) Prove that the only ideals in M3(R) are {0} and Ma(R).
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Solution.

(a) The first one is “add a times row one to row two,” the second is “add a times row two
to row one,” the third is “multiply row one by ¢,” the fourth is “multiply row two by

¢,” and the last is “switch row one and row two.”

(b) Multiplying on the right gives the same operations as above, but with “row” switched
for “column.”

(c) We need to show that if I is an ideal that contains a nonzero matrix A, then I = My(R).
From linear algebra, we know that we can use elementary row and column operations
to transform A to the identity matrix. Thus, an ideal that contains A contains the
identity matrix, and thus must be the whole ring!

3) Let F be a field, and R = F[x] be a polynomial ring. For f(x) € R, we say that two polynomials
g(x), h(x) are congruent modulo f(z) if f(z)|(g(x) — h(x)). We write g(x) = h(x) mod f(z)
to denote this.!

a) Show that for A € F, and any a(z) € R, a(z) = a(\) mod x — A.

b) Suppose that the greatest common divisor of b(x) and ¢(z) is 1. Show that for any d(x),
there is a polynomial e(x) that solves the congruence equation c¢(x)e(z) = d(x) mod b(x).

¢) Suppose again that the greatest common divisor of f(x) and g(x) is 1. Show that for any
h(z) and i(z), there is a polynomial j(x) that solves the system of congruence equations

{jm = h(x) mod f(x)
i(z) mod g(x).
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d) Let a, 3,7, € F, with o # . Use the previous parts to show that there is a polynomial
k(x) € R such that k(a) = v and k(8) = 6.

Solution.

(a) This is essentially the Remainder Theorem from the text/worksheet: if we divide a(x)
by x — A the remainder is a(A); since a(z) is congruent to its remainder, the statement
is true.

(b) We know that there are polynomials €’(x) and e”(z) such that b(x)e/(z)+c(z)e” (z) = 1.
Take e(x) = d(x)e'(x).

(¢) We know that there are polynomials j'(z) and j”(x) such that j'(z) f (z)+j"(z)g(x) = 1.
Take j(x) = j'(z) f(x)i(z) + 5" (z)g(z)h(z).

(d) Since (z — «) and (z — ) are coprime, by part (c), there is a polynomial such that
k(x) = ymod (z — «) and k(z) = dmod (x — /3). By part (a), this means that k(o) =
~ymod (x — «) and k(S) = dmod (x — ). In both congruence equations, the two sides

are constants, so they must be equal (each congruence class here contains at most one
constant). Thus, this k(x) works.

IThis is a special case of congruence modulo an ideal; namely congruence modulo the ideal (f(z)).
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4) Let S C Q be the subset of rational numbers with odd denominators (when expressed in lowest
terms).
(a) Show that S is a subring of Q.

(b) Let I C S be the subset of rational numbers with even numerator (when expressed in
lowest terms). Prove that I is an ideal of S.

(c) Show that the quotient ring S/I is isomorphic to Zs.

Solution.
(a) First, note that 1 = %,0 = % € 5. Given w7, 5757 € S, where a,b,¢,d € Z,

L b a(2d+1)+b(20+1) and % b ab
2b+1  2c+d  (2b+1)(2d+1) 2b+12c+d  (2b+1)(2d+1)

These fraction representations might not be expressed in the lowest possible terms, but
since 2 1 2b + 1)(2d + 1), their lowest possible terms will still have odd denominators.
We conclude that S is a subset of Q that is closed for addition and multiplication and
contains 1 and 0. To check that S is a subring, all that remains to check is that S is
closed for additive inverses. And indeed,

a —a

To%+1 241 €5

(b) Again, we start by noting that 0 = % € I. Given integers a, b, ¢, d,

2a 2¢ 2(a(2d+1) +b(20+ 1))

= I.
%11 2d+1 CESCES

Notice again that this might not be a representation in lowest possible terms, but that
2 divides the numerator and not the denominator, which implies that after reducing
the fraction to its lowest possible terms, that will still hold. Similarly,

2a 2¢c 4ac e
20+12d+1  (2b+1)(2d+ 1)

(c) We will show that S/I has two elements, and thus must be isomorphic to Zs. To do
this, note that every element in S that is not in [ is of the form g‘;ﬂ, where a,b € Z.
We will show that every element of this form is congruent to 1 modulo I, which implies

that there are only two classes modulo I. An indeed,

2¢+1 1 2a+1—(2b+1) 2(a—0)
— = = el
26+1 1 2b+1 2b+1

To give an explicit isomorphism S/I to Za, we send 0+ I to [0]2 and 1+ I to [1].




