Homework #5

Problems to hand in on Thursday, February 21, in the beginning of class. Write your answers out carefully, staple pages, and write your name and section number on each page.

- 1) Let $R = \mathbb{R}[x, y]$ be the polynomial ring in two variables x, y.
 - a) Let $S \subseteq \mathbb{R}^2$. Show that the set

$$I_S := \{ f(x, y) \in R \mid f(a, b) = 0 \text{ for all } (a, b) \in S \}$$

is an ideal of $\mathbb{R}[x, y]$.

- b) If $S = \{(0,0)\}$, what is I_S ?
- c) Show that, with I_S as in b), $R/I_S \cong \mathbb{R}$.
- 2) Consider the ring $M_2(\mathbb{R})$.
 - a) Take any nonzero 2×2 matrix A. Show that by multiplying A on the left by matrices of the form

 $\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix}, \begin{bmatrix} c & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & c \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$

we can do any elementary row operation to A.

- b) State a way of interpreting column operations using matrix multiplication.
- c) Prove that the only ideals in $M_2(\mathbb{R})$ are $\{0\}$ and $M_2(\mathbb{R})$.
- 3) Let \mathbb{F} be a field, and $R = \mathbb{F}[x]$ be a polynomial ring. For $f(x) \in R$, we say that two polynomials g(x), h(x) are **congruent modulo** f(x) if f(x)|(g(x) h(x)). We write $g(x) \equiv h(x) \mod f(x)$ to denote this.¹
 - a) Show that for $\lambda \in \mathbb{F}$, and any $a(x) \in R$, $a(x) \equiv a(\lambda) \mod x \lambda$.
 - b) Suppose that the greatest common divisor of b(x) and c(x) is 1. Show that for any d(x), there is a polynomial e(x) that solves the congruence equation $c(x)e(x) \equiv d(x) \mod b(x)$.
 - c) Suppose again that the greatest common divisor of f(x) and g(x) is 1. Show that for any h(x) and i(x), there is a polynomial j(x) that solves the system of congruence equations

$$\begin{cases} j(x) \equiv h(x) \mod f(x) \\ j(x) \equiv i(x) \mod g(x). \end{cases}$$

- d) Let $\alpha, \beta, \gamma, \delta \in \mathbb{F}$, with $\alpha \neq \beta$. Use the previous parts to show that there is a polynomial $k(x) \in R$ such that $k(\alpha) = \gamma$ and $k(\beta) = \delta$.
- 4) Let $S \subset \mathbb{Q}$ be the subset of rational numbers with odd denominators (when expressed in lowest terms).
 - (a) Show that S is a subring of \mathbb{Q} .
 - (b) Let $I \subseteq S$ be the subset of rational numbers with even numerator (when expressed in lowest terms). Prove that I is an ideal of S.
 - (c) Show that the quotient ring S/I is isomorphic to \mathbb{Z}_2 .

¹This is a special case of congruence modulo an ideal; namely congruence modulo the ideal (f(x)).